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Definition: Let R be a bounded region in the xy plane and f a function continuous on R.
a. The a double integral of f over the rectangle R is
[ f (xy)dA =lim, . F7 ¥ f (x;;.v;;) AAif this limit exists, where m is
subintervals of R on x — axis and n is subintervals of R on y — axis.
(x{;.¥{;) a sample point of Rij of part of R,
b. If f is non negative and integrable on R, then the volume V" of the solid region between
the graph of £ and R is given by V= [[_ f (x, v)dA

Z A
z= fix,y)

Suppose that f is a function of two variables that is integrable on the
rectangle = [a, b] X [c,d] . We use the notation _l": f(x,v)dy to mean that x held fixed and
f(x,¥) is integrated with respect to ¥ from v = ¢ te y = d. This procedure is called
partial integration with respect to y. Now j: flx,v)dy is a number that depends on the
value of x, so it defines a function of x.

A() =[] Floy)dy

If we now integrate the function A with respect to x from x = a to x = b, we get

[2 AGdx = [2[f2 F (eyddy|dx-- (1)
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The integral on the right side of equation 1 is called an iterated integral.

Usually the brackets are omitted. Thus
J2 02 Fleyddyde = f2[[2 F Goyddy|de - (2)
Means that we first integrate with respect to y from c to d and then with respect to x from a to
b.
Similarly the iterated integral
J2 12 Fleyydxdy = f2 [ FGoy)dx| dy - (3)
means that we first integrate with respect to x (holding y fixed) from x = a to x = b and then

we integrate the resulting function of y with respect to y from y = ¢ to y = d. Notice that in

both equations 2 and 3 we work from the inside out.

Keywords: Definition of Double Integral, Polar Coordinates, Applications.

Example 1. Evaluate the iterated integrals,
(@ [ f; x%y dydx (b) J;" S 2%y dxdy
Solution: (a) Regarding x as constant, we obtain

F : 2y 2Ry L [1R\ 3,

xydy = =x°|—|—x°|—]|=—x°

. 2 _ 2 2 2
¥

=1

Thus the function A in the preceding discussion is given by A(x) = i:un: in this example. We

now integrate this function of x from 0 to 3:

X

D5 = i [heae= (2) =2

-

(b) Here we first integrate with respect to x:

2 03 ar 3 2,3 =3
J- J- x:}rdxd}r=f [f xz}rdxld}r=f l—dl dy
1 Jo 1 Lo 1 L3 2=

o
J’* g gy?|ay 27
1 -Ig.r - 2 1 2

Theorem(Fubini’s Theorem): If f is continuous on the rectangle
R={(x,v):a<x <hec=<y=d}then

[ fCe.y)dA = [7 [F fCe,y)dydx = [° [ f(x, y)dxdy

More generally, this is true if we assume that f is bounded on R, f is discontinuous only on a

finite number of smooth curves, and the iterated integrals exist.
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Example 2: Evaluate the double integral [[_(x —3y*)dA, where
R={(x,y)0=x<2 1<y<2}
Solution: Fubini’s Theorem gives
[ Gc —3yDda= [ [ (x —3y*) dydx = [ [xy— y*])Z{ dx
— 2 (7.3 = —
= [1x—7)dx = (% Tx‘ﬂ)— 12
Example 3: Evaluate ffg}rsin(x,}r]dﬂ, where R = [1,2] x [0,x].
Solution 1: If we first integrate with respect to x, we get
’ _ T 2 . — r_ =2
I,y sin(x,y)dA = [ [ v sin (x,y)dxdy = [[[—cos(x,3)]i=1 dy
= f; (—cos 2y + cosy)dy
_ (1. Ty
= ( . 51n2}r+sm}r‘ﬂ) =0
Solution 2: If we reverse the order of the integration, we get

[ ysin(x,y)dA = [ [Ty sin (x,y)dydx

To evaluate the inner integral, we use integration by parts with
u=y dv = sin(xy)dy

du = dy p =22 ()

- x

T . _ —yooslxy) py=m 1 pem
and so [ ¥ sin(xy)dy = — f;,—:u + fo cos(xy)dy

—MCOE TIX 1 .
=22 4 2 Tsin(x, )]s

— M COE X Ein T X

x x2

If we now integrate the first term by parts with uw = _—xl and dv = cosm xdx, we get

dx . - COET X Einmx Einm x
di?=—z,?.?=51nﬂx,aﬂd_r( )dx=— — [——dx
x

x x x
Thereforef(—ncnsnx +sln:x)dx _ _ sinmx
x x x
2 pm . __|—Einmx :_—slnﬂn . _
and so ~r1 fu ysin(x,v) dvdx = [ - ]1 =—F  tsinwt =0

Double Integral over General Regions
For single integrals, the region over which we integrate is always an interval. But for double

integrals, we want to be able to integrate a function f not just over rectangles but also over
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regions D of more general shape, such as the one illustrated in Figure 1. We suppose that D is

a bounded region, which means that D can be enclosed in a rectangular region R as in Figure

2. Then we define a new function F with domain R by

flxy) if (x¥y)€D
0 if (x,v) ER butnotinD

F (o) = - (D)

y v

D D

0 v 0 \

FIGURE | FIGURE 2

If F

is integrable over R, then we define the double integral of f over D by

H f(x,y)dA = ﬂ F(x, y)dA

where F is given by Equation 1.

Definitions:

1. Aplane region D is said to be of type I if it lies between the graphs of two
continuous function of x, that is,

D={(x,y)la =x =<b, g,(x)<y= g,(x)}where g; and g, are continuous on [a, b].

y V=g,(x) L2 ¥ i
— ' S V= l!':'.“ y= g:|:_'|l' i -
D D y
N o , | N =
| y= q ix) | : TS { L
I S I l y=g,ln ! I R _
- ¥=gx
0 a b | | I L
| | o a b .
0 b X
FIGURE 5 Some type I regions B e

2. If f is continuous on a type I region D such that
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then _[ j f(x,y)dA = j: J‘:Z((XX)) f(x, y dydx
D

3. Anplane region D is said to be of type Il if it lies between the graphs of two continuous

function of y, that is,
D={(x,y)le<y=d, hy(¥) =x =< h,(y)} where hy and h, are continuous on [, d].

o
d e

AT = i o = o)

ac = Frg i > S = Fra v

FIGURE 7T
Soimue t e I rraemicorns

So 'L[ f(x,y)dA= Ld j:(iy)) f(x, y ixdy

Example 6: Evaluate H (x + 2y)dA, where D is the region bounded by the parabolas
D

y=2x%andy =1+ x>

Solution: The parabolas intersect when 2x* = 1 +x?, that is, x* = 1, so x = +1. We note

that the region D, is a type I region but not a type Il region and we can write
D={(x,v)|-1=x<1, 2x* <y <1+x?}

Since the lower boundary is ¥ = 2x? and the upper boundary is y = 1 + x2,
[[ (x+2y)dA = flj::: (x+2y)dydx = fl Dy +y2 [ dx
D

= [1Ix(1+ 2D+ (1 +x9)? — x(2x?) — (2x7)*]dx

= [1,(—3x* —x® + 2x% + x + 1)dx

: +§+x‘—11) =%

15

-+

5 4 3

_ (—3:::5 =t 2x
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Double Integrals in polar coordinates

Change to polar coordinates in a double integral

VA

P(r.0) =P(x.y)

\

O X

[JARSE
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From the above figure we can see that the polar coordinate (r, &) of a point are related to the

rectangular coordinate (x,y) by the equations: x* + y* = r?
x = reosf, v = rsinf

If f is
0O=a=r=<bha=<6f<f where0=ff —a < 2m, then

continuous on a polar rectangle R

J:[ f(x,y)dA = Lﬂ.[: f (rcos @, rsin @)rdrdé
R

/ r=250
&= /3 ,-"
./'A’
, r
/,
4 Ny
// ’ <z -.\ o o
Ly
- __~\‘— \- 5 -
o’

given by

Example 1: Evaluate ﬂ (3x + 4y2)dA, where R is the region in the upper half — plane
R

bounded by the circles x* + ¥* = 1 and x*+ y* = 4,
Solution: The region R can be described as
R={(x,)ly=01< x*+y? =4}

In polar coordinates it isgiven by 1 < r < 2, 0 < & =< m. Therefore,
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[l o= s s oo

_ T 2 2 3 . 2
= [, J, (3r%cosé + 4r®sin®@) drd6
= f; [rPcosf + risin*6]721d6 = f;(?cosﬁ + 15 sin* @) df
= f; [?cosﬁ' + 12—5 (1—cos 25'}] dé
., 158 15 _ 15n
= 7sin +T_ Tsmzﬁ]u ==
Example 2: Find the volume of the solid bounded by the plane z = 0 and the

Paraboloid z = 1 — x% — v*,

Solution: If we put z = 0 in the equation of the parabolid, we get x* + ¥* = 1. This means
that the plane intersects the parabolid in the circle x* + ¥* = 1, so the solid lies under the
parabolid and above the circular disk D given by x* + ¥* = 1. In polar coordinates D is

givenby 0 < r = 1,0 =8 < 2m. Since 1 — x* — y* =1 —r?, the volume is

\% =J!(1—x2 —yz)dA:LZ”Jj(l—rz)rdrde

4

] 1
- 1 .3 — r r _r
= _fu df _]"D (r—7°)dr =2m [—2 __]u .

4 Z

Example 3: Find the volume of the solid that lies under the paraboloid z = x* + ¥, above
the xy — plane, and inside the cylinder x? + y* = 2x,

Solution: The solid lies above the disk D whose boundary circle has equation x* + y* = 2x
or, after completing the square, (x — 1)*+y* =1

In polar coordinates we have x* + y* = r? and x = r cos 8, so the boundary circle

becomes r* = 2 r cos f,0r 7 = 2 cos 8. Thus the disk D is given by

D ={(r,9]:—§59 gg,nir EECQSE} and we, have
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7 c2cos o [t 7
% :J.Dj(x2 + yz)dA:J.”ZJ'O2 grzrdrdé’:j%{%}o do

2
— 4] cos* 9d0 =8 [ 2cos* 0do-8[ Y L1220 | 4o
L o ) >

:2]0%[1+200520+%(1+cos449)}d0
7
_ 2| 291 sin20+ Tsin46 =2(§] (5j=3_”
2 8 ) 2)\2) 2

Applications of Double Integrals

Area, center of mass of plane region, surface area

If £ is continuous on a polar region of the form
D={(r.8)=a<8<p h(8) =r=h,(0)}

then V = ” f(x, y)dA = J'ﬂj'hhz(f)) f(rcos@,rsin@)rd rdd
D 1

In particular, taking f(x, y) = 1, hy(6) = 0, and h,(#) = h(6) in the formula, we see that the
area of the region D bounded by 8 = a, 8 = 5, and r = h(6) is:

h(@)
A(D)=HldA=J'j_[oh(g)rdrd9=f[r—22} do
D

0
B
= ["4InO)F* do
Example 1: Use a double integral to find the area enclosed by one loop of the four leaved

rose r = cos2f,
Solution: From the sketch of the curve in figure below, we see that a loop is given by the

region D = {(r, 8) = % < f = f,ﬂ <r< coszﬁ'} so the area is
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Center of Mass
The coordinates (x, ¥) of the center of mass of a plane occupying the region D and having

density function p(x,v) are X = %ﬂ xo(x, y)dA  y= % ﬂ yo(x, y)dA
D D

Where the mass m is given by m = [ p(x, y)dA
D

Example 2: The density at any point on a semicircular lamina is proportional to the distance

from the center of the circle. Find the center of mass the lamina.

«

D

Solution: Let’s place the lamina as the upper half of the circle x* + ¥* = a*. Then the
distance from a point (x, ¥)to the center of the circle (the origin) is 4/ x2 + 2. Therefore the

density function is p(x, v) = Ky/x? 4+ v? where K is some constant. Both the density
function and the shape of the lamina suggest that we convert to polar coordinates. Then
Jx?+ y? =randtheregion Disgivenby 0 = r = a,0 = & = m. Thus the mass of the

lamina is

A

m = J'J' p(x, y)dAzﬂK X% + yZdA=J.a(k r)rdrdé

a_ Km’

0 3

r3
3

:KTdelrzdr =Kz
0 0

Both the lamina and the density function are symmetric with respect to the y — axis, so the

center of mass must lies on the y — axis, that is, x = 0. The y — coordinate is given by

3
Krma®

y=— J] yp(x, y)dA= ﬁrsin O(kr)rdrd @
D 00

:;5 _I"; sin #d# _f: ridr = % [—cosB]] [g]u

T

= = 3—: Therefore the center of mass is located at the point(ﬂ, 3—:)

il 4 2
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Surface Area

Definition: Let R be a region, and let f have continuous partial derivatives on R. If T is the

graph of f on R, then the surface area S of I is defined by
S = ﬂ. \/[fx(x, y)f + [fy(x, y)f +1dA
R

Example 3: Let R be the rectangular region bounded by the lines

x=0,x=3, yv=0,yv=2
z 3y
and let f(x,v) = -x /2.
Find the surface area S of the portion of the graph of f that lies over R.

1y ,
Solution: Notice that f,.(x, ¥) = x /2 and }g(x, ¥) =0 for (x,v) in R consequently

S :J.J.,I(x%jz +0+1dA:J:J.02\/m dydx

=2f;w,“x+1dx=(§(x+1]3f'r2 g)=23—8

CONCLUSION
By the help of double integrals we are finding the volume of the integrals and given double integral is converted
to polar coordinates and finally we finding the applications of double integrals like Area, center of mass of plane

region, surface area, centre of mass.
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