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Definition: Let R be a bounded region in the  plane and  a function continuous on R. 

a. The a double integral of  over the rectangle R is 

 if this limit exists, where m is 

subintervals of  on x – axis and n is subintervals of  on y – axis. 

 a sample point of  of part of . 

b. If  is non negative and integrable on , then the volume  of the solid region between 

the graph of  and  is given by V  

 

Suppose that  is a function of two variables that is integrable on the  

 . We use the notation  to mean that  held fixed and 

 is integrated with respect to  from . This procedure is called 

partial integration with respect to y. Now  is a number that depends on the 

value of , so it defines a function of . 

    

If we now integrate the function A with respect to x from  we get 
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The integral on the right side of equation 1 is called an iterated integral. 

Usually the brackets are omitted. Thus 

         

Means that we first integrate with respect to y from c to d and then with respect to x from a to 

b. 

Similarly the iterated integral 

   

means that we first integrate with respect to x (holding y fixed) from x = a to x = b and then 

we integrate the resulting function of y with respect to y from y = c to y = d. Notice that in 

both equations 2 and 3 we work from the inside out. 

 

Keywords: Definition of Double Integral, Polar Coordinates, Applications. 

Example 1. Evaluate the iterated integrals, 

(a)                                      (b)   

Solution:  (a) Regarding x as constant, we obtain 

 

Thus the function A in the preceding discussion is given by  in this example. We 

now integrate this function of x from 0 to 3: 

             

(b) Here we first integrate with respect to x: 

 

Theorem(Fubini’s Theorem): If  is continuous on the rectangle 

  then 

  

More generally, this is true if we assume that  is bounded on ,  is discontinuous only on a 

finite number of smooth curves, and the iterated integrals exist. 
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Example 2: Evaluate the double integral  where            

                      . 

Solution: Fubini’s Theorem gives 

  

                                             

Example 3: Evaluate . 

Solution 1: If we first integrate with respect to , we get 

  

         

                                              

Solution 2: If we reverse the order of the integration, we get  

  

To evaluate the inner integral, we use integration by parts with  

                                                                

                                                                           

 and so  

                                               

                                               

If we now integrate the first term by parts with  we get 

 

Therefore   

 and so  

Double Integral over General Regions 

For single integrals, the region over which we integrate is always an interval. But for double 

integrals, we want to be able to integrate a function  not just over rectangles but also over 
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regions D of more general shape, such as the one illustrated in Figure 1. We suppose that D is 

a bounded region, which means that  can be enclosed in a rectangular region R as in Figure 

2. Then we define a new function  with domain  by 

                         

 

 

 

 

 

 

 

If   

is integrable over , then we define the double integral of f  over  by 

                                          

    
D R

dAyxFdAyxf ,,

                                                              

where F is given by Equation 1. 

Definitions:  

1. A plane region  is said to be of type I if it lies between the graphs of two 

      continuous function of , that is,  

       where  and   are continuous on . 

 

2. If  is continuous on a type I region D such that  
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then    
 

 

  
D

b

a

xg

xg
dydxyxfdAyxf

2

1

,,  

3. A plane region D is said to be of type II if it lies between the graphs of two continuous 

function of y, that is,  

       where  are continuous on . 

 

 

 

 

 

 

 

 

 

 

 

So    
 

 

  
D

d

c

yh

yh
dxdyyxfdAyxf

2

1

,,  

Example 6: Evaluate   
D

dAyx ,2  where D is the region bounded by the parabolas 

. 

Solution: The parabolas intersect when  that is,  so . We note 

that the region D, is a type I region but not a type II region and we can write 

                         

Since the lower boundary is   and the upper boundary is  

        









D

xy

xy

x

x
dxyxydydxyxdAyx

1

1

1

2

2
1

1

1

2

2

2

2

2
22  
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  Double Integrals in polar coordinates  

        Change to polar coordinates in a double integral 

  

 

 

 

 

 

 

 

From the above figure we can see that the polar coordinate  of a point are related to the 

rectangular coordinate  by the equations:   

 

If  is continuous on a polar rectangle R given by 

 then 

     
R

b

a
rdrdrrfdAyxf




 sin,cos,

 

 

 

 

 

 

 

 

 

Example 1: Evaluate   
R

dAyx ,43 2
 where R is the region in the upper half – plane 

bounded by the circles . 

Solution: The region R can be described as 

      

In polar coordinates it is given by . Therefore, 
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      
R

rdrdrrdAyx



0

2

1

222 sin4cos343  

                           

                                                                                                                         

 

                              

Example 2: Find the volume of the solid bounded by the plane  and the 

Paraboloid .   

 

 

 

 

 

 

Solution: If we put  in the equation of the parabolid, we get . This means 

that the plane intersects the parabolid in the circle  so the solid lies under the 

parabolid and above the circular disk D given by . In polar coordinates D is 

given by . Since  the volume is  

      
D

rdrdrdAyxV



2

0

1

0

222 11  

     . 

Example 3: Find the volume of the solid that lies under the paraboloid  above 

the  – plane, and inside the cylinder . 

Solution: The solid lies above the disk D whose boundary circle has equation   

or, after completing the square,  

In polar coordinates we have  so the boundary circle 

becomes . Thus the disk D is given by  

   and we, have 
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 Applications of Double Integrals 

 Area, center of mass of plane region, surface area  

If  is continuous on a polar region of the form 

  

then    
 

 

  
D

rdrdrrfdAyxfV









2

1

h

h
sin,cos,  

 

In particular, taking f(x, y) = 1, h1(θ) = 0, and h2(θ) = h(θ) in the formula, we see that the 

area of the region D bounded by θ = α, θ = β, and r = h(θ) is: 

 

 

 

 

Example 1: Use a double integral to find the area enclosed by one loop of the four leaved 

rose  . 

Solution: From the sketch of the curve in figure below, we see that a loop is given by the 

region  so the area is  
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Center of Mass 

The coordinates  of the center of mass of a plane occupying the region D and having 

density function  are     
D D

dAyxy
m

ydAyxx ,
1

,   

Where the mass m is given by  
D

dAyxm ,

 

Example 2: The density at any point on a semicircular lamina is proportional to the distance 

from the center of the circle. Find the center of mass the lamina. 

 

 

 

 

 

Solution: Let’s place the lamina as the upper half of the circle . Then the 

distance from a point to the center of the circle (the origin) is . Therefore the 

density function is  where K is some constant. Both the density 

function and the shape of the lamina suggest that we convert to polar coordinates. Then 

 and the region D is given by . Thus the mass of the 

lamina is  

      

   

303

,

23

0 0

2

6 0

22

aKar
drrd

rdrdrkdAyxdAyxm

a

D

a

D














 

  

 

Both the lamina and the density function are symmetric with respect to the y – axis, so the 

center of mass must lies on the y – axis, that is, . The y – coordinate is given by  

           








0 0

3
sin

3
,

a

D

rdrdrkr
a

dAyxy  

        

      .  Therefore the center of mass is located at the point . 
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Surface Area 

Definition: Let R be a region, and let  have continuous partial derivatives on R. If  is the  

graph of  on R, then the surface area S of  is defined by  

       dAyxfyxfS
R

yx  1,,
22

 

Example 3: Let R be the rectangular region bounded by the lines 

  

and let . 

Find the surface area S of the portion of the graph of  that lies over R. 

Solution: Notice that consequently 

    






3

0

2

0

2

2
1

110 dydxxdAxS
R

 

       

CONCLUSION  

By the help of double integrals we are finding the volume of the integrals and given double integral is converted 

to polar coordinates and finally we finding the applications of double integrals like Area, center of mass of plane 

region, surface area, centre of mass. 
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