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DEFINITION 

Triple Integral  

Let T be a transformation that maps a region S in uvw-space onto a region R in xyz-space by 

means of the equations  

                                      

The Jacobian of T is the following  determinat: 

 

The determinant that arises in this calculation is called the Jacobian of transformation and is 

given a special notation.  

Fubinis theorem for Triple integrals: If  is continuous on the rectangular box 

 then 
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Example 1: Evaluate the triple integral 


wheredVzyx ,,, 2

 
  is the rectangular box given by  

   

Solution: If we choose to integrate with respect to  then  and then z  we obtain 
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Now we define the triple integral over a general bounded region E in three – dimensional space (a solid) by 

much the same procedure that we used for double integrals. We enclose E in a box B of the type 

. Then we define a function F so that it agrees with  on 

E but is 0 for points in B that are outside E, by definition, 

   dVzyxFdVzyxf
B

 


,,,,  

This integral exists if  is continuous and the boundary of E is “reasonably smooth”.   

 

A solid region E is said to be of type I if it lies between the graphs of two continuous functions of  

that is,   

where D is the projection of E onto xy – plane show in figure below. Notice that the  boundary of the solid E is 

the surface with equation  while the lower boundary is the surface . 

 

 

 

 

 

 

 

 

 

type I region given by Equation  If E is a 

then  
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Example 2: Evaluate 
E

zdz where E is the solid tetrahedron boundary by the four planes 
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. 

Solution: When we set up a triple integral it’s wise to draw two diagrams one of the solid 

 region  and one of its projection  on the xy – plane.  

 

 

 

 

The lower boundary of the tetrahedron is the plane  and the upper boundary is the 

plane  so we use . 

Notice that the planes  intersect in the line or    

in the – plane. So the project of E is the triangular region shown in figure 3, and we have 

 

This description of E as a type 1 region enables us to evaluate the integral as follows: 
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Evaluating Triple Integrals with Cylindrical Coordinates 



 
 

89 | P a g e  
 

In the cylindrical coordinate system, a point P in three dimensional space is represented by 

the ordered triple  were r and  are polar coordinates of the projection of P onto the 

xy – plane and z is the directed distance from the xy – plane to P. 

 

 

 

Suppose that  is a type 1 region whose  on the –plane is conveniently described in polar 

coordinates. In particular, suppose that  is continuous and  

 where  is given in polar coordinates 

by 

    

We know that    
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By changing x and y to polar coordinates, we obtain  
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Example 3: Evaluate  

Solution:  
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This iterated integral is a triple integral over the solid region 

  

and the projection of E onto the xy – plane is the disk . The lower surface of E 

is the cone  and its upper surface is the plane . This region has a much 

simpler description in cylindrical coordinates. 

  

Therefore, we have  
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Evaluating Triple Integrals with Spherical Coordinates 

 The spherical coordinates  of a point P in space are shown in Figure 1, where 

is the distance from the origin to  is the angle as in cylindrical coordinates, and 

 is the angle between the positive  - axis and the line segment OP. 

 

 

 

 

 

 
 

 

Figure 1: Spherical coordinate of points 

 

Here . But  So 

. Also the distance formula shows that 

. 

Theorem: (Formula for triple integration in spherical coordinates) 
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Were E is a spherical wedge given by  
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Example 4: Evaluate   ,
2

3
222 dVzyxe



  where B is the unit ball: 

 

Solution: Since the boundary of B is a sphere, we use spherical coordinates          

                          

In addition, spherical coordinates are appropriate because . 
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Applications : Volume, Center of mass of Solid Region 

Volume 

If  for all points in E, then the triple integral does represent the volume of .

   


dV  

Example 1: Use a triple integral to find the volume of the tetrahedron T bounded by the 

planes . 

Solution: The tetrahedron T and its projection D on the  – plane are shown in figures 1 

and 2. The lower boundary of T is the plane and the upper boundary is the plane 

 that is, . 
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Figure 1                                                           Figure 2 

Therefore we have  
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Center of Mass 

If the density function of a solid object that occupies the region E is  in units of 

mass per unit volume at any point , then its mass is 

   

and its moments about the three coordinate planes are 

  

The center of mass is located at the point  where . 

Example 2: Find the center of mass of a solid of constant density that is bounded by the 

parabolic cylinder  and the planes . 

Solution: 

The lower and upper surfaces of E are the planes  so we describe E as a 

type 1 region: 

           

Then, if the density is  the mass is  

  

    

    

                                         

Because of the symmetry of E and  about  - plane, we can immediately say that  

and therefore  

The other moments are 
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Therefore the center of mass is 

 .             

   

Change of Variables in Multiple Integral  

Consider a transformation T from the -plane to -plane defined by  

where x and y are related to u and v by the equations  

 

or, as we sometimes write, . 

Assume the transformation T is a single valued continuous and has continuous partial 

derivatives. If  , then the point  is called the image of the point 

. If no two points have the some image, T is one-to-one.  Figure 1 shows the effect of 

a transformation T on a region S in the -plane. T transforms S  

 

 

 

 

 

 

 

 

 

                                                             

Figure 1 

into a region R in the -palne called the image of S, consisting of the images of all points in 

S. 
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If  is one-to-one transformation, then it has an inverse transformation  from the -

plane to the uv-plane and it is possible to solve for u and v in terms of   and : 

                                        

Now let us see how a change in variables affects a double integral. We start with a small 

rectangle S in uv-plane whose lower left corner is the point   and whose dimensions 

are  and . (See Figure 2) 

 

Figure 2 

The image of S is a region R in the plane, one of whose boundary points is    

     .  

The vector  is the position vector of the image of the point 

. The equation of the lower side of S is , whose image curve is given by the 

vector function . The tangent vector at  to this image curve is 

                                  

Similarly, the tangent vector at  to the image curve of the left side of S ( namely, 

) is  

We can approximate the image region  by a parallelogram determined by the secant 

vectors  show in Figure 

3.  
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Figure 3 
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   and so  

Similarly   

This means that we can approximate R by a parallelogram determined by the vectors  

and  (See Figure 4). Therefore we can approximate the area of R by the area of this 

parallelogram,  

                                    

                                                                         

 

 

Figure 4 

Let T be a transformation that maps a region S in uvw-space onto a region R in xyz-space by 

means of the equations  

                                      

Definition: Tha Jacobian of transformation T given by  and  is  
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Next we divide a region  in the -plane into rectangles  and call their images in the 

plane  (See Figure 5). 

 

 

 

 

 

 

Figure 5 

Applying the approximation  to each , we approximate the double 

integral of f over R as follows: 
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where the Jacobian is evaluated at . Notice that this double sum is Riemann sum for 

the integral  
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The foregoing argument suggests that the following theorem is true.  

Theorem 1 (Change of Variables in a Double Integral)  

Suppose that T is a continuous function and has continuous partial derivatives transformation 

whose Jacobian is nonzero and that maps a region S in the uv-plane onto a region R in the xy-

plane. Suppose that f is continuous on R and that R and S are type I and type II regions. 

Suppose also that T is one-to-one, except perhaps on the boundary of S. Then  
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Example 1 Use the above theorem to drive the formula for double integration in polar 

coordinates.  



 
 

97 | P a g e  
 

Solution Here the transformation T from the  to the  is given by  

                                                  

T maps an ordinary rectangle in the  to a polar rectangle in the . The 

Jacobian of T is  

      

Thus the above theorem gives  
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Example 2 Use the change of variables ,   to evaluate the 

integral , where R is the region bounded by the x-axis and the parabolas  

and       

Solution: First we need to compute the Jacobian 

                    . 

Therefore, by the above theorem, 

=  

                =  
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CONCLUSION 

Now we define the triple integral over a general bounded region E in three – dimensional 

space (a solid) by much the same procedure that we used for double integrals and finding 

cylindrical coordinates and spherical coordinates and change of variables in multiple integrals 

.By the application triple integrals finding Volume, Center of mass of Solid Region. 
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