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DEFINITION
Triple Integral

Let T be a transformation that maps a region S in uvw-space onto a region R in xyz-space by
means of the equations

x=gluv,w) yv=h(uv,w) z=k(uv,w)
The Jacobian of T is the following 3 X 3 determinat:

ik

dx dy dx dx
dx dy 0 30 3. T 32
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The determinant that arises in this calculation is called the Jacobian of transformation and is
given a special notation.

Fubinis theorem for Triple integrals: If f is continuous on the rectangular box

B = [a,b] X [c,d] x [r,s], then

JIT £y ) =[] txy.2) dndya

Key words: Triple Integrals ,double integrals , Applications, Transformation of cyclindercal

coordinates,Sperical coordinates.

Example 1: Evaluate the triple integral m X,y,2°dV, where B
B

is the rectangular box given by
B={(x,y,z):0<x<1,-1<y<2 0=<z<3}

Solution: If we choose to integrate with respect to x, then ¥, and then z, we obtain
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Now we define the triple integral over a general bounded region E in three — dimensional space (a solid) by
much the same procedure that we used for double integrals. We enclose E in a box B of the type
{(x,yv,z);a=x=boec =<y =d, r =z = s} Then we define a function F so that it agrees with f on

E but is O for points in B that are outside E, by definition,
m f(xy,z)dv = m F(x,y,z)dVv
E B

This integral exists if f is continuous and the boundary of E is “reasonably smooth”.

A solid region E is said to be of type I if it lies between the graphs of two continuous functions of x and y,
thatis, E = {(x,,2): (x,3) € D,ul(x,y) = 3 = u,(x,y)} (*)
where D is the projection of E onto xy — plane show in figure below. Notice that the boundary of the solid E is

the surface with equation Z = 1, (X, }?j, while the lower boundary is the surface Z = 14 (X,}?].

Z=u,(x,y)

Z %
N cmm— g
i & z=u,(x,y)
f ~A
oLl 4
/ e g e h e
¥ iR s
FIGURE 2
: A type 1 solid region . . . :
If E is a type | region given by Equation (*)
then
uz(x,y)
j{j F(x,y,2)dV = g[ Lo y,Z)dz}dA

Example 2: Evaluate m zdz where E is the solid tetrahedron boundary by the four planes
E
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x=0,y=0,z=0,andx+y+z=1.
Solution: When we set up a triple integral it’s wise to draw two diagrams one of the solid

region E and one of its projection D on the Xy — plane.

A
(0,0,1) 1 R
. z=1-x—y y=1-x
E [ D

fo (0.1,0)
e

s T L3

(1,0.0) - =3 \-—:O 0 v=0 l &

X -

The lower boundary of the tetrahedron is the plane z = 0 and the upper boundary is the
planex +y+z=1(orz=1—x —y),sowe use u;(x,y) = 0 and u,(x,y) =1 —x —y.
Notice that the planes x + vy +z = 1 and z = O intersectinthe linex +y=1or y=1—x
in the xv — plane. So the project of E is the triangular region shown in figure 3, and we have
E={(x3):0=x<1,0=y<1-x0£z<1—x—y}

This description of E as a type 1 region enables us to evaluate the integral as follows:

r z=1-x—
R A
E

x=0

r =1-x
1 o o1pl @=x-yy |
_EJ.oJ.o 1-x-y) dydx_EJ.0 B dx

e S

4 24

y=0

Evaluating Triple Integrals with Cylindrical Coordinates
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In the cylindrical coordinate system, a point P in three dimensional space is represented by

the ordered triple (r, 8, z), were r and & are polar coordinates of the projection of P onto the

Xy — plane and z is the directed distance from the xy — plane to P.

<A

¢ P(r.6.z)

T

y (7, 6.0)

Suppose that E is a type 1 region whose D on the xy—plane is conveniently described in polar
coordinates. In particular, suppose that f is continuous and

E={(x,v3):(x,v) €D,u,(x,v) = z=u,(xy)} where D is given in polar coordinates

by
D={(rf:a<f<fB h(8)<r<h ()}

We know that m X,Y,2)dV = J:[Uuzxy (x,y,z)dz}dA

By changing x and y to polar coordinates, we obtain

m X,y,z)dV = Ijhz juzrmsersmg (rcosé, rsing,z)rdzdrdé

I'COSH rsiné

Example 3: Evaluate [~ fﬂ hi f—ﬁ[x + yHdzdydx

Solution:
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This iterated integral is a triple integral over the solid region

E={(xy3):—2<x<2,Va—x?<y<Va—x% fx?+y? <32)

and the projection of E onto the xy — plane is the disk (x* +¥*) = 4. The lower surface of E

is the cone 3 = g’m and its upper surface is the plane 3 = 2. This region has a much

simpler description in cylindrical coordinates.
E={(r.0,3:0=0<2n,0=r=<2,r=z=<2}

Therefore, we have

Y —

f_zz = fjm(xz + yNdzdydx :'['}[J (x2 + yz)dV = IOMIOzfrzrdzdrdH

— i 2 374 _ — En}_iszzﬁ

= [, dé [ v (2—r)dr ET'ELT‘ -7 ]c- 7
Evaluating Triple Integrals with Spherical Coordinates
The spherical coordinates (o, 8, @) of a point P in space are shown in Figure 1, where
p = |OPlis the distance from the origin to P, 8 is the angle as in cylindrical coordinates, and

@ is the angle between the positive z - axis and the line segment OP.

ZA

» P(p. 6. )
/)
b

Figure 1: Spherical coordinate of points

Herez=pcos@andr = psin® Butx =rcosf and y =rsiné. So

x = psin@cosf, vy =psin@sinf, z = pcos®. Also the distance formula shows that
p?=x*+y*+z7

Theorem: (Formula for triple integration in spherical coordinates)

m f(x,y,2)dV = f J:fj: f (psin gcos b, psin gsin b, pcos )p? singdpdod ¢

Were E is a spherical wedge given by
E={(p6,0):a<p<ha<f<Bc<0d<d
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Example 4: Evaluate ||| elx® + y® +z%)>dV, where B is the unit ball:
Y
B

B={(x.y.3): 2" +y*+ 27 <1}
Solution: Since the boundary of B is a sphere, we use spherical coordinates
B={(p,8,0:0<p<1,0<6<2m,0<0<m}

-
r

In addition, spherical coordinates are appropriate because x* + y* + z* = p*,

Thus, m e(x2 +y° 4+ 22)% av = Ioﬂj.ohjjeo’z)%pz singd pd @d ¢
B

= [Fsin@do [ "de [ pZe” dp

= [—cos@]] (27) EEPE]: = gﬂ'(e - 1)

Applications : Volume, Center of mass of Solid Region

Volume

If £ (x,v,z) = 1 for all points in E, then the triple integral does represent the volume of E.

V(E) =jg dv

Example 1: Use a triple integral to find the volume of the tetrahedron T bounded by the

planes x + 2y +z = 2,x = 2y,and z = 0.
Solution: The tetrahedron T and its projection D on the xy — plane are shown in figures 1
and 2. The lower boundary of T is the plane z = 0and the upper boundary is the plane

x+2y+z=2thatis,z =2 —x— 2y.

A
(0.0,2)
YA
x+2y=2
X =2y~ x+2y+z=2 I T (ory=1-— x/2)
/
T
y 1
- D (.3)
y=x/2
% .
0 I X
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Figure 1 Figure 2

Therefore we have

1 1-x/2 2-x-2y o
v(n=fffav=] [ [dzdydx = [} 77722 —x - 2y)dydx = ;
T 0 % 0 2
Center of Mass
If the density function of a solid object that occupies the region E is p(x,y,z), in units of

mass per unit volume at any point (x, v, z), then its mass is

m=[ff, p (xy,2) dv

and its moments about the three coordinate planes are
M, = [[f; xp (x.y.2) dv, M, = [[[; yo (x.y,2) aVv. M, = [[[; zp(x,y,2) dV
The center of mass is located at the point (%,7,2) where x = =22 | 5 = =% | 7=22

Example 2: Find the center of mass of a solid of constant density that is bounded by the

parabolic cylinder x = y* and the planes x = z,z = 0,and x = 1,

Solution:
The lower and upper surfaces of E are the planes z =0 and z = x, so we describe E as a

type 1 region:
E ={[x,}?,z:]—1£}r£ 1; }:"2 ix 5 1, 0 £.Z£.'I}

Then, if the density is g (x,v,z) = p, the mass is

1 1 px
L = ..[[J.E Pdv = f_l ..r}.z .Jru, szdxd}?

zyx=1
=p [, [axdedy =p [*, Hx:}_z dy

=2 (A —y"dy =p [[(1—y*)dy

1

:»'5] 4p
= 'u'—_ T —
‘D[‘ s g

Because of the symmetry of E and g about x3 - plane, we can immediately say that Mxz = 0
and therefore vy = 0,

The other moments are

1 1 1 1 1[5
M, = f_[fE xpdv = f_l _I;_z xpdidxdy = p f_i f}_zx dxdy = p ~r—1 [?L:}_z dy
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Mxy = [[f; spdv = f_ll Jr;,-lz zpdidxdy = ‘Df-ll f:j" H—u axdy

=2, [t dxdy =2 [[(1—yS)dy =7

7
Therefore the center of mass is

— — _ (My= Mxz Mxyy _ f5 5
[x!}F!E:]_( L L )_(_:ﬂ:_)-

m m m 7 14

Change of Variables in Multiple Integral

Consider a transformation T from the uw-plane to xy-plane defined by T(w, v) = (x,¥)
where X and y are related to u and v by the equations

x=gluv) v=h(uv)

or, as we sometimes write, x = x(u,v), v = y(u,v).

Assume the transformation T is a single valued continuous and has continuous partial
derivatives. If (wyv,) = (xy¥,) , then the point (x,y,) is called the image of the point
(w4 v,). If No two points have the some image, T is one-to-one. Figure 1 shows the effect of

a transformation T on a region S in the uw-plane. T transforms S

S T
— > R
() T

Figure 1

into a region R in the xy-palne called the image of S, consisting of the images of all points in

S.
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If T is one-to-one transformation, then it has an inverse transformation T~ from the xy-
plane to the uv-plane and it is possible to solve for u and v in terms of x and v:

u=0G(x,y) and v=H(xvy)

Now let us see how a change in variables affects a double integral. We start with a small
rectangle S in uv-plane whose lower left corner is the point (u,, v, ) and whose dimensions

are Au and Av. (See Figure 2)

U\ y
u=uy,
I (g 0)
\
A S T
: X — (Xos Yo) #
(U, Uy) A“ \ f y
U="ry T (1, v,)
0 u 0 =
Figure 2

The image of S is a region R in the xy —plane, one of whose boundary points is

T[:uu,”u) = [xu,}’u]'

The vector r(u, v) = glu, v)i + h(u, v)j is the position vector of the image of the point
(u, v). The equation of the lower side of S is ¥ = v,, whose image curve is given by the
vector function r(u,v,). The tangent vector at (x, v, ) to this image curve is

ay .

: . dx .
T = Guuo,vo)i + hy (1, v0)j = PR

Similarly, the tangent vector at (x, ¥, ) to the image curve of the left side of S ( namely,

) . ] dx , dy .,
u=1ug)isn, = g, (ugvp)i+ h,(ug,vp)j =i+ a_ij

We can approximate the image region R = T(5) by a parallelogram determined by the secant
vectors a=r(u,+Aw,v,) —r(ugv,) b =r(uyv, +Av) —r(u,v,) show in Figure
3.
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I (g, Uy) &

r(u, + Al(.z'(,jl
Figure 3
. r(u, +Au,v,)—r(u,,v .
But r, = lim (U, o) = "{Up, Vo) and so r(ug + Au, vy) — r(ug, vy) ¥ Aur,
AV—0 AU

Similarly r(ugy, vy + Av) —r(ugv,) ¥ Avr,

This means that we can approximate R by a parallelogram determined by the vectors Aur;,
and Awvr, (See Figure 4). Therefore we can approximate the area of R by the area of this

1, X 1,|Audv

parallelogram, |(Aur,) X (Avr,)| =

Figure 4

Let T be a transformation that maps a region S in uvw-space onto a region R in xyz-space by
means of the equations

x=gluv,w) y=h{uv,w) z=k(uv.w)
Definition: Tha Jacobian of transformation T given by x = g(u,v) and v = h(u,v) is
dx dx
ey) _ |au av| _Bxdy Bxdy

auw) dy @y " Budv dv du
du dv

95| Page




International Journal of Advance Research in Science and Engineering Q
Vol. No. 5, Special Issue No. 01 , May 2016

www.ijarse.com [JARSE

ISSN 2319 - 8354
Next we divide a region S in the uw-plane into rectangles 5, ; and call their images in the

xy —plane R;; (See Figure 5).

v y =
4
7\
1] >
Av[’
3 flAu 7
A
m,-'. vj)
0 u 0 ;
Figure 5

Applying the approximation A4 ~ ‘_z“‘f"i

(ETR

AuAv to each R.

;j» We approximate the double

integral of f over R as follows:

I f(x,y)dAziif(xi,yj)AA

i=i j=1

>

a(x,y)
o(u.v)

AUAV

=33 f(g(u,.v,))

i=1 j=1

where the Jacobian is evaluated at (u;,v;). Notice that this double sum is Riemann sum for

the integral

I f(gu,v),h@u,v)

Mdudv
o(u,v)

The foregoing argument suggests that the following theorem is true.
Theorem 1 (Change of Variables in a Double Integral)

Suppose that T is a continuous function and has continuous partial derivatives transformation
whose Jacobian is nonzero and that maps a region S in the uv-plane onto a region R in the xy-
plane. Suppose that f is continuous on R and that R and S are type | and type Il regions.
Suppose also that T is one-to-one, except perhaps on the boundary of S. Then

[l exyda= [ oy, yww) ((:j zg

dudv

0
0

Example 1 Use the above theorem to drive the formula for double integration in polar
coordinates.
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Solution Here the transformation T from the »& — plane to the xy — plane is given by
x = g(r,8) =rcosh v = h(r, ) = rsind

T maps an ordinary rectangle in the »& — plane to a polar rectangle in the xy — plane. The
Jacobian of T is

fx Ax
Bilxy ar  ag cosd —rsind 5 L4
—I‘,x}} = gr_ gg_ =1 =rcos B +rsin@=r=0
8(rd) oy oy sinf  rcosf

dr 88

Thus the above theorem gives

g f(x, y)dxdy = J;'[ f (rcos@,rsin 0)‘%

drdé = H f(rcos@,rsind)rdrdd
S

Example 2 Use the change of variablesx = u* —v* y=2uv to evaluate the

integralf_l'R ydA, where R is the region bounded by the x-axis and the parabolas y* = 4 — 4x

and y*=4+4x,y=0.

Solution: First we need to compute the Jacobian

ox ox
lxx) fu  Arv 2u _21'-9‘ 2 2
= = =4u” —4v- =0
Aluw) dy 2y 21 2u -
du dv

Therefore, by the above theorem,

A A ~ - -
ffR ydA = _I'L 2uw ‘a(u;}‘ dA = _I"ﬁi fﬁl(zuvjdl[u‘ + v*)dudv=8 _r: _r;-(ui?j] (u® + v*)dudv

11 4 1 5 %
= o T A St ¥ A
IDL +: ] _

wu=

1
dv = fﬁl[zv +4v¥)dv=[vi+v*]; =2
0

dx dx d=
u  Av  Aw
dlxanz) _ |8y By gz
& uwww) - Z H E
dz O= oz
u v Aw
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CONCLUSION

Now we define the triple integral over a general bounded region E in three — dimensional
space (a solid) by much the same procedure that we used for double integrals and finding
cylindrical coordinates and spherical coordinates and change of variables in multiple integrals

.By the application triple integrals finding Volume, Center of mass of Solid Region.
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