International Journal of Advance Research in Science and Engineering Q,
Vol. No.5, Issue No. 05, May 2016

www.ijarse.com [JARSE

ISSN 2319 - B354

BIGDATA DATABASE SYSTEM
Jitendra Kumar!, Atteeq Ahmed?

Assistant Professor, 2Associate Professor,

IIMT College of Management, Greater Noida, (India)

ABSTRACT

The HDFS plays a role to store very large data sets reliably, and to stream those data sets at high bandwidth to user
applications in Bigdata. In a large cluster, thousands of servers both host directly attached storage and execute user
application tasks. By distributing storage and computation across many servers, the resource can grow with demand while

remaining economical at every size.

Keywords: Hadoop, HDFS, Distributed File System

ARCHITECTURE OF BIGDATA DATABASE SYSTEM

A. NameNode

The HDFS namespace is a hierarchy of files and directories. Files and directories are represented on the
NameNode by inodes, which record attributes like permissions, modification and access times, namespace and
disk space quotas. The file content is split into large blocks (typically 128 megabytes, but user selectable file-by-
file) and each block of the file is independently replicated at multiple DataNodes (typically three, but user
selectable file-by-file). The NameNode maintains the namespace tree and the mapping of file blocks to
DataNodes (the physical location of file data). An HDFS client wanting toread a file first contacts the
NameNode for the locations of data blocks comprising the file and then reads block contents from the DataNode
closest to the client. When writing data, the client

requests the NameNode to nominate a suite of three DataNodes to host the block replicas. The client then writes
data to the DataNodes in a pipeline fashion. The current design has a single NameNode for each cluster. The
cluster can have thousands of DataNodes and tens of thousands of HDFS clients per cluster, as each DataNode

may execute multiple application tasks concurrently.

B. DataNodes
Each block replica on a DataNode is represented by two files in the local host’s native file system. The first file
contains the data itself and the second file is block’s metadata including checksums for the block data and the
block’s generation stamp. The size of the data file equals the actual length of the block and does not require
extra space to round it up to the nominal block size as in traditional file systems. Thus, if a block is half full it
needs only half of the space of the full block on the local drive. During startup each DataNode connects to the
NameNode and performs a handshake. The purpose of the handshake is to verify the namespace ID and the
software version of the DataNode. If either does not match that of the NameNode the DataNode automatically
400 | Page




International Journal of Advance Research in Science and Engineering Q,
Vol. No.5, Issue No. 05, May 2016

www.ijarse.com JJARSE
shuts down. The namespace ID is assigned to the file system instance when it is formatted. The namespace ID is
persistently stored on all nodes of the cluster. Nodes with a different namespace ID will not be able to join the
cluster, thus preserving the integrity of the file system. The consistency of software versions is important
because incompatible version may cause data corruption or loss, and on large clusters of thousands of machines
it is easy to overlook nodes that did not shut down properly prior to the software upgrade or were not available
during the upgrade. A DataNode that is newly initialized and without any namespace ID is permitted to join the

cluster and receive the cluster’s namespace ID.

After the handshake the DataNode registers with the NameNode. DataNodes persistently store their unique
storage IDs. The storage ID is an internal identifier of the DataNode, which makes it recognizable even if it is
restarted with a different IP address or port. The storage ID is assigned to the DataNode when it registers with

the NameNode for the first time and never changes after that.

A DataNode identifies block replicas in its possession to the NameNode by sending a block report. A block
report contains the block id, the generation stamp and the length for each block replica the server hosts. The first
block report is sent immediately after the DataNode registration. Subsequent block reports are sent every hour

and provide the NameNode with an up-todate view of where block replicas are located on the cluster.

During normal operation DataNodes send heartbeats to the NameNode to confirm that the DataNode is
operating and the block replicas it hosts are available. The default heartbeat interval is three seconds. If the
NameNode does not receive a heartbeat from a DataNode in ten minutes the NameNode considers the DataNode
to be out of service and the block replicas hosted by that DataNode to be unavailable. The NameNode then

schedules creation of new replicas of those blocks on other DataNodes.

Heartbeats from a DataNode also carry information about total storage capacity, fraction of storage in use, and
the number of data transfers currently in progress. These statistics are used for the NameNode’s space allocation

and load balancing decisions.
C. HDFS Client

User applications access the file system using the HDFS client, a code library that exports the HDFS file system
interface. Similar to most conventional file systems, HDFS supports operations to read, write and delete files,
and operations to create and delete directories. The user references files and directories by paths in the
namespace. The user application generally does not need to know that file system metadata and storage are on
different servers, or that blocks have multiple replicas. When an application reads a file, the HDFS client first
asks the NameNode for the list of DataNodes that host replicas of the blocks of the file. It then contacts a
DataNode directly and requests the transfer of the desired block. When a client writes,it first asks the

NameNode to choose DataNodes to host replicas

401 |Page

ISSN 2319 - B354




International Journal of Advance Research in Science and Engineering Q,
Vol. No.5, Issue No. 05, May 2016

www.ijarse.com [JARSE

ISSN 2319 - 8354
of the first block of the file. The client organizes a pipeline from node-to-node and sends the data.

When the first block is filled, the client requests new DataNodes to be chosen to host replicas of the next block.
A new pipeline is organized, and the client sends the further bytes of the file. Each choice of DataNodes is likely
to be different.

Unlike conventional file systems, HDFS provides an API that exposes the locations of a file blocks. This allows
applications like the MapReduce framework to schedule a task to where the data are located, thus improving the
read performance. It also allows an application to set the replication factor

of a file. By default a file’s replication factor is three. For critical files or files which are accessed very often,

having a higher replication factor improves their tolerance against faults and increase their read bandwidth.

D. Image and Journal

The namespace image is the file system metadata that describes the organization of application data as
directories and files. A persistent record of the image written to disk is called a checkpoint. The journal is a
write-ahead commit log for changes to the file system that must be persistent. For each client-initiated
transaction, the change is recorded in the journal, and the journal file is flushed and synched before the change is
committed to the HDFS client. The checkpoint file is never changed by the NameNode; it is replaced in its
entirety when a new checkpoint is created during restart, when requested by the administrator, or by the
CheckpointNode described in the next section. During startup the NameNode initializes the namespace image
from the checkpoint, and then replays changes from the journal until the image is up-to-date with the last state
of the file system. A new checkpoint and empty journal are written back to the storage directories before the

NameNode starts serving clients.

If either the checkpoint or the journal is missing, or becomes corrupt, the namespace information will be lost
partly or entirely. In order to preserve this critical information HDFS can be configured to store the checkpoint
and journal in multiple storage directories. Recommended practice is to place the directories on different
volumes, and for one storage directory to be on a remote NFS server. The first choice prevents loss from single
volume failures, and the second choice protects against failure of the entire node. If the NameNode encounters
an error writing the journal to one of the storage directories it automatically excludes that directory from the list

of storage directories.The NameNode automatically shuts itself down if no storage directory is available.
E. CheckpointNode

The NameNode in HDFS, in addition to its primary role serving client requests, can alternatively execute either

of two other roles, either a CheckpointNode or a BackupNode. The role is specified at the node startup.The

402 |Page




International Journal of Advance Research in Science and Engineering Q,
Vol. No.5, Issue No. 05, May 2016

www.ijarse.com JJARSE
CheckpointNode periodically combines the existing checkpoint and journal to create a hew checkpoint and an
empty journal. The CheckpointNode usually runs on a different host from the NameNode since it has the same
memory requirements as the NameNode. It downloads the current checkpoint and journal files from the

NameNode, merges them locally, and returns the new checkpoint back to the NameNode.

Creating periodic checkpoints is one way to protect the file system metadata. The system can start from the most

recent checkpoint if all other persistent copies of the namespace image or journal are unavailable.

Creating a checkpoint lets the NameNode truncate the tail of the journal when the new checkpoint is uploaded to
the NameNode. HDFS clusters run for prolonged periods of time without restarts during which the journal
constantly grows. If the journal grows very large, the probability of loss or corruption

of the journal file increases. Also, a very large journal extends the time required to restart the NameNode. For a

large cluster, it takes an hour to process a week-long journal. Good practice is to create a daily checkpoint.
F. BackupNode

A recently introduced feature of HDFS is the BackupNode. Like a CheckpointNode, the BackupNode is capable
of creating periodic checkpoints, but in addition it maintains an inmemory, up-to-date image of the file system
namespace that is always synchronized with the state of the NameNode. The BackupNode accepts the journal
stream of namespace transactions from the active NameNode, saves them to its own storage directories, and
applies these transactions to its own namespace image in memory. The NameNode treats the BackupNode as a
journal store the same as it treats journal files in its storage directories. If the NameNode fails, the
BackupNode’s image in memory and the checkpoint on disk is a record of the latest namespace state. The
BackupNode can create a checkpoint without downloading checkpoint and journal files from the active
NameNode, since it already has an up-to-date namespace image in its memory. This makes the checkpoint
process on the BackupNode more efficient as it only needs to save the namespace into its local storage

directories.
G. Upgrades, File System Snapshots

During software upgrades the possibility of corrupting the system due to software bugs or human mistakes
increases. The purpose of creating snapshots in HDFS is to minimize potential damage to the data stored in the
system during upgrades. The snapshot mechanism lets administrators persistently save the current state of the
file system, so that if the upgrade results in data loss or corruption it is possible to rollback the upgrade and
return HDFS to the namespace and storage state as they were at the time of the snapshot.

The snapshot (only one can exist) is created at the cluster administrator’s option whenever the system is started.
If a snapshot is requested, the NameNode first reads the checkpoint and journal files and merges them in

memory. Then it writes the new checkpoint and the empty journal to a new location, so that the old checkpoint

403 |Page

ISSN 2319 - B354




International Journal of Advance Research in Science and Engineering Q,
Vol. No.5, Issue No. 05, May 2016

www.ijarse.com JJARSE
and journal remain unchanged. During handshake the NameNode instructs DataNodes whether to create a local
snapshot. The local snapshot on the DataNode cannot be created by replicating the data files directories as this
will require doubling the storage capacity of every DataNode on the cluster. Instead each DataNode creates a
copy of the storage directory and hard links existing block files into it. When the DataNode removes a block it
removes only the hard link, and block modifications during appends use the copy-on-write technique. Thus old

block replicas remain untouched in their old directories.

The cluster administrator can choose to roll back HDFS to the snapshot state when restarting the system. The
NameNode recovers the checkpoint saved when the snapshot was created. DataNodes restore the previously
renamed directories and initiate a background process to delete block replicas created after the snapshot was
made. Having chosen to roll back, there is no provision to roll forward. The cluster administrator can recover the
storage occupied by the snapshot by commanding the system to abandon the snapshot, thus finalizing the

software upgrade.

System evolution may lead to a change in the format of the NameNode’s checkpoint and journal files, or in the
data representation of block replica files on DataNodes. The layout version identifies the data representation
formats, and is persistently stored in the NameNode’s and the DataNodes’ storage directories. During startup
each node compares the layout version of the current software with the version stored in its storage directories
and automatically converts data from older formats to the newer ones. The conversion requires the mandatory

creation of a snapshot when the system restarts with the new software layout version.

HDFS does not separate layout versions for the NameNode and DataNodes because snapshot creation must be
an allcluster effort rather than a node-selective event. If an upgraded NameNode due to a software bug purges its
image then backing up only the namespace state still results in total data loss, as the NameNode will not
recognize the blocks reported by DataNodes, and will order their deletion. Rolling back in this case will recover
the metadata, but the data itself will be lost. A coordinated snapshot is required to avoid a cataclysmic

destruction.
REFERENCES

[1] S. Ghemawat, H. Gobioff, S. Leung. “The Google file system,” In Proc. of ACM Symposium on Operating
Systems Principles, Lake George,NY, Oct 2003, pp 29-43.

[2] F. P. Junqueira, B. C. Reed. “The life and times of a zookeeper,” In Proc. of the 28th ACM Symposium on
Principles of Distributed Computing, Calgary, AB, Canada, August 10-12, 2009.

[3] Lustre File System. http://www.lustre.org

[4] M. K. McKusick, S. Quinlan. “GFS: Evolution on Fast-forward,” ACM Queue, vol. 7, no. 7, New York,
NY. August 2009.

404 |Page

ISSN 2319 - B354




International Journal of Advance Research in Science and Engineering 4,
Vol. No.5, Issue No. 05, May 2016
www.ijarse.com mp:} 5)8535 "
[5] O. O'Malley, A. C. Murthy. Hadoop Sorts a Petabyte in 16.25 Hours and a Terabyte in 62 Seconds. May

2009.
[6] R. Pike, D. Presotto, K. Thompson, H. Trickey, P. Winterbottom, “Use of Name Spaces in Plan9,”

Operating Systems Review, 27(2), April1993, pages 72—76.
[7] S. Radia, "Naming Policies in the spring system," In Proc. of 1st IEEE Workshop on Services in Distributed

and Networked Environments, June 1994, pp. 164-171.

405 |Page




