
 
 

296 | P a g e  
 

NEW ITERATIVE METHOD FOR SOLVING HIGHER 

ORDER KDV EQUATIONS 

Manoj Kumar
1
, Anuj Shanker Saxena

2
 

1,2
Assistant Professor, National Defence Academy, Khadakwasla, Pune (India) 

 

ABSTRACT 

Generalized Korteweg-de Vries equation of fifth order (gfKdV) and seventh order (gsKdV) has various 

applications in Sciences and Engineering. In this paper, a New Iterative Method (NIM) is being proposed to 

obtain the solution of several forms of the gfKdV and gsKdV equations. We have shown that the NIM solution is 

more accurate as comparedto the techniques such as, homotopy perturbation method and adomian 

decomposition method. Further, results also demonstrate that NIM solution is more reliable, easy to compute 

and computationally fast as compared to other methods. 

 

Keywords: Korteweg-deVries eq.s, New Iterative Method, Adomian Decomposition Method, Homotopy 

Perturbation Method. 

 

1. INTRODUCTION 

The generalized KdV equation of fifth-order (gfKdV) is defined as: 

     (1) 

where  and  are arbitrary non zero real parameters and the subscripts denote the derivatives of the 

corresponding variable. The fifth-order KdVequationplay vital role in various domains such as describing 

motion of the long waves in shallow water under gravity,conformal field theory, two-dimensional quantum 

gravitationcanonical field theory, nonlinear optics etc. 

Generalized KdV equation of seventh-order (gsKdV) is written as: 

   (2) 

where and are arbitrary non zero parameters. This equation plays an important role in 

mathematical physics, engineering and applied sciences for investigating travelling solitary wave solutions. 

Various numerical techniques have been proposed in the past to solve these equations. Some of the popular 

techniques for fifth and seventh order KdV equations are Adomian decomposition method [1], modified 

Adomian decomposition method [2], variational iteration method [3], modified variational iteration method, 

homotopy perturbation method, modified homotopy perturbation method and homotopy analysis method [4], 

Expfunction method [5], homogeneous balance method [6], extended tanh method [7] etc. In addition to these 

techniques the seventh order KdVequations are also being solved using the Hirota direct method and the tanh-

coth method [8], homotopy perturbation method [9, 10], variational iteration method [11,12], homotopy analysis 

method [13], Adomian decomposition method [14], Cole-Hopf transformation [15] and reconstruction of 

variational iteration method [16]. 
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In the present paper, we employ New Iterative Method (NIM), developed by DaftardarGejji and Jafari [17], to 

solve generalized Korteweg-de Vries equations of fifth and seventh orders [18, 19]. NIM has been used by many 

researchers to solve linear and nonlinear equations of integer and fractional orders [20, 21, 22, 23]. Advantage 

of NIM is that it gives highly accurate solution with comparatively much lesser number of iterations. Further, it 

does not involve additional overhead in computing terms such asadomian polynomials in ADM[24,14,25] 

andconstruction of homotopy function in HPM [10, 26]. 

 

The organization of this paper is as follows: In section 2, we give the basic introduction of NIM. Solutions of 

the generalized KdV equations using NIMderived for several forms of gfKdV and gsKdVare discussed in 

section 3. We call these solutions as NIM solutions.NIM solutionsare accurate and the NIM computation 

technique is faster as compared to the other commonly used techniques such as HPM[10] and ADM[14]. The 

comparisonsbetween the numerical results of the proposed NIM solutions with that ofHPM and ADMare 

discussed in section 4. Finally,we conclude by summarizing the advantages of using NIM in solving higher 

order KdV equations in section 4. 

 

II NEW ITERATIVE METHOD (NIM) 

To illustrate the idea of the NIM, we consider the following general functional equation: 

,          (3) 

where N is a nonlinear operator from a Banach space B → B and  is a known function. We are looking for a 

solution  of (3) having the series form 

          (4) 

The nonlinear operator N can be decomposed as: 

     (5) 

Now using the above eq.s (4) and (5) in (3): 

     (6) 

We define the recurrence relation in the following way: 

   

        (7) 

 

 

Then, 

   (8) 

and    

.        (9)     

The m-term approximate solution of (3) is given by . For understanding the 

convergence of this method we refer reader to [27]. 
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Solution of higher order KdV equations using NIM 

In this section, we discuss solution of higher order KdV equations using NIM. For this we consider two 

scenarios each, for fifth order and seventh order Korteweg-deVries (KdV) equations.  

 

2.1 Lax and Sawada-Kotera fifth order equations 

Equation (1), as in section 1, is known as Lax fifth order KdV for a = 30, b = 30, c = 10 and d = 1 (Example 1) 

and Sawada-Kotera fifth order KdVs for a = 45, b = 15, c = 15 and d = 1 (Example 2).  We next derive their 

solutions using NIM. In the following discussion we denote .  

 

Example1:The Lax fifth-order KdV equation [10, 6, 29]: 

      (10) 

with the initial condition: 

,        (11) 

has an exact solution: 

.                (12) 

 

Considering the equivalent integral equation for (10-11): 

    (13) 

On comparing it with equation (3),we have  

The NIMrecurrence relation for Lax fifth-order KdV equation (10), using its equivalent form (13) and the 

general solution (7) is: 

 

  (14) 

 

And, its2-term NIM solution ( i.e. )usinginitial condition(11) is: 

 

.  (15) 

 

Example 2: The Sawada-Kotera fifth order KdV eq. [10, 6, 28] 

     (16) 

with the initial condition: 

,       (17) 

has an exact solution: 

. 

The initial value problem (16-17) is equivalent to 

   (18) 

On comparing it with equation (3), we have . 
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In view of the recurrence relation (7), we get 

      (19) 

 

.                   (20) 

 

Therefore, 3-term NIM solution of (16) (i.e.,  ) with initial condition (17) is: 

 

            (21) 

2.2 Lax’s and Sawada-Kotera seventh order KdV equations 

In this section, we solve generalized seventh order Korteweg-de Vries (KdV) equations (2) using NIM for 

a=140,b = 70,c = 280,d = 70,e = 70,f = 42 and g = 14 (Lax seventh order KdV equation) and for a = 252,b = 

63,c = 378,d = 126,e = 63,f = 42 and g = 21 (Sawada-Kotera seventh order KdV equation). 

 

Example3:The Lax seventh order KdV eq. [14, 29] 

         (22) 

with the initial condition: 

,          (23) 

hasan exact solution  

.                              (24) 

The eq. (22) along with the initial condition (23) can be written equivalently as 

 

       (25)                                                                                       

where  

     (26) 

Now using the recurrence relation (7) in (26): 

        (27) 

 

            (28) 
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Therefore, the 3-term approximate solution obtained by NIM of (22) with initial condition (23) is given by 

.                         (29) 

 

Example4: The Sawada-Kotera seventh order KdV eq. [14, 29] 

   (30) 

with the initial condition: 

,         (31) 

has an exact solution: 

.          (32) 

The eq. (30) along with the initial condition (31) can be written as  

            (33) 

where, 

(34) 

Using the recurrence relation (7), we get: 

        (35) 

 

            (36) 

 

Therefore, the 3-term approximate NIM solution of (30-31) (i.e., ) is given by: 

            (37) 

III RESULT ANALYSIS 

We discuss the numerical results of the NIM solutions for Lax equations and Sawada- Kotera equations of fifth 

and seventh orders as derived in section 3.  Tables1 and 2 give the numerical comparison between HPM and 

NIM solutionsfor the fifth order equation,and Tables 3 and 4 are the comparison between ADM and NIM 
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solutions for the seventh order. Graphical representations of NIM solutions and exact solutions for Lax 

equations of fifth and seventh order are shown in Figures 1 and 3 respectively. Similarly graphical comparison 

between NIM solutions and exact solutions of Sawada-Kotera fifth and seventh order equations are shown in 

Figures 2and 4 respectively. 

 

x t Exact Solution 10-term HPM Abs Error 2-term NIM Abs Error 

0.1 0.1 

0.2 

0.3 

0.4 

0.5 

3.99999 x 10
-4 

3.99999 x 10
-4 

3.99999 x 10
-4 

3.99999 x 10
-4 

3.99999 x 10
-4 

9.60 x 10
-12 

1.92 x 10
-11 

2.88 x 10
-11 

3.84 x 10
-11 

4.78 x 10
-11 

1.44004x10
-15 

2.88002 x10
-15 

4.32000 x10
-15 

1.44004 x10
-15 

1.44004 x10
-15 

0.2 0.1 

0.2 

0.3 

0.4 

0.5 

3.99998 x 10
-4 

3.99998 x 10
-4 

3.99998 x 10
-4 

3.99998 x 10
-4 

3.99998 x 10
-4 

9.60 x 10
-11 

1.92 x 10
-11 

2.88 x 10
-11 

3.84 x 10
-11 

4.80 x 10
-11

 

2.87991 x10
-15 

5.75982 x10
-15 

8.63979 x10
-15 

1.15198 x10
-14 

1.15198 x10
-14 

0.3 0.1 

0.2 

0.3 

0.4 

0.5 

3.99995 x 10
-4 

3.99995 x 10
-4 

3.99995 x 10
-4 

3.99995 x 10
-4 

3.99995 x 10
-4 

9.50 x 10
-11 

1.91 x 10
-11 

2.88 x 10
-11 

3.84 x 10
-11 

4.80 x 10
-11

 

4.31979 x10
-15 

8.63963 x10
-15 

1.29594 x10
-14 

1.72792 x10
-14 

1.72792 x10
-14 

0.4 0.1 

0.2 

0.3 

0.4 

0.5 

3.99999 x 10
-4 

3.99999 x 10
-4 

3.99999 x 10
-4 

3.99999 x 10
-4 

3.99999 x 10
-4 

9.50 x 10
-11 

1.91 x 10
-11 

2.87 x 10
-11 

3.87 x 10
-11 

4.79 x 10
-11

 

5.75944 x10
-15 

1.15190 x10
-14 

1.72786 x10
-14 

2.30380 x10
-14 

2.30380 x10
-14 

0.5 0.1 

0.2 

0.3 

0.4 

0.5 

3.99985 x 10
-4 

3.99985 x 10
-4 

3.99985 x 10
-4 

3.99985 x 10
-4 

3.99985 x 10
-4 

9.60 x 10
-11 

1.92 x 10
-11 

2.88 x 10
-11 

3.84 x 10
-11 

4.80 x 10
-11

 

7.19905 x10
-15 

1.43981 x10
-14 

2.15971 x10
-14 

2.87961 x10
-14 

2.87961 x10
-14 

 

Table 1. Comparison between 2-term NIM errorand10-term HPM errorfor eq.(10)(x0 = 0.0,k = 0.01) 
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x t Exact Solution 10-term HPM Abs Error 2-term NIM Abs Error 

0.1 0.1 

0.2 

0.3 

0.4 

0.5 

1.999998 x 10
-4 

1.999998 x 10
-4 

1.999998 x 10
-4 

1.999998 x 10
-4 

1.999998 x 10
-4 

4.800 x 10
-16 

9.600 x 10
-16 

1.440 x 10
-15 

1.920 x 10
-15 

2.400 x 10
-15 

2.71051 x10
-20 

0
 

8.13152 x10
-20 

2.71051 x10
-20 

2.71051 x10
-20 

0.2 0.1 

0.2 

0.3 

0.4 

0.5 

1.999992  x 10
-4 

1.999992 x 10
-4 

1.999992 x 10
-4 

1.999992 x 10
-4 

1.999992 x 10
-4 

9.600 x 10
-16 

1.920 x 10
-15 

2.880 x 10
-15 

3.840 x 10
-15 

4.800 x 10
-15

 

0
 

2.71051 x10
-20 

2.71051 x10
-20 

2.71051 x10
-20 

2.71051 x10
-20 

0.3 0.1 

0.2 

0.3 

0.4 

0.5 

1.999982 x 10
-4 

1.999982 x 10
-4 

1.999982 x 10
-4 

1.999982 x 10
-4 

1.999982 x 10
-4 

1.440 x 10
-15 

2.880 x 10
-15 

4.320 x 10
-15 

5.760 x 10
-15 

7.200 x 10
-15

 

2.71051 x10
-20 

5.42101 x10
-20 

0
 

0
 

5.42101 x10
-20 

0.4 0.1 

0.2 

0.3 

0.4 

0.5 

1.999968 x 10
-4 

1.999968 x 10
-4 

1.999968 x 10
-4 

1.999968 x 10
-4 

1.999968 x 10
-4 

1.920 x 10
-15 

3.840 x 10
-15 

5.760 x 10
-15 

7.680 x 10
-15 

9.599 x 10
-15

 

2.71051 x10
-20 

8.13152 x10
-20 

2.71051 x10
-20 

2.71051 x10
-20 

5.42101 x10
-20 

0.5 0.1 

0.2 

0.3 

0.4 

0.5 

1.99950 x 10
-4 

1.99950 x 10
-4 

1.99950  x 10
-4 

1.99950  x 10
-4 

1.99950  x 10
-4 

2.400 x 10
-14 

4.800 x 10
-14 

7.200 x 10
-14 

9.600 x 10
-14 

1.200 x 10
-14

 

8.13152 x10
-20 

5.42101 x10
-20 

5.42101 x10
-20 

5.42101 x10
-20 

5.42101 x10
-20 

Table 2: Comparison between 3-term NIM errorand 10-term HPM errorfor eq.(16) (x0 = 0.0,k = 0.01) 
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x t Exact Solution 5-term ADM Abs. Error 3-term NIM Abs Error 

0.1 0.1 

0.2 

0.3 

0.4 

0.5 

1.99980 x 10
-2 

1.99980 x 10
-2 

1.99980 x 10
-2 

1.99980 x 10
-2 

1.99980 x 10
-2

 

1.31265 x 10
-8 

2.46564 x 10
-8

 

3.60575 x 10
-8

 

4.72723 x 10
-8

 

5.82447 x 10
-8 

 

3.46945 x 10
-18

 

0 

0 

0 

3.46945 x 10
-18

 

0.2 0.1 

0.2 

0.3 

0.4 

0.5 

1.99920 x 10
-2 

1.99920 x 10
-2 

1.99920 x 10
-2 

1.99920 x 10
-2 

1.99920 x 10
-2

 

2.69869 x 10
-8

 

4.99471 x 10
-8

 

7.27082 x 10
-8

 

9.51513 x 10
-8

 

1.17157 x 10
-7

 

0 

3.46945 x 10
-18

 

6.93889 x 10
-18

 

3.46945 x 10
-18

 

3.46945 x 10
-18

 

0.3 0.1 

0.2 

0.3 

0.4 

0.5 

1.99820 x 10
-2 

1.99820 x 10
-2 

1.99820 x 10
-2 

1.99820 x 10
-2 

1.99820 x 10
-2

 

3.50406 x 10
-8

 

6.95085 x 10
-8

 

1.03998 x 10
-8

 

1.38303 x 10
-8

 

1.72205 x 10
-8

 

0 

3.46945 x 10
-18

 

3.46945 x 10
-18

 

3.46945 x 10
-18

 

6.93889 x 10
-18

 

0.4 0.1 

0.2 

0.3 

0.4 

0.5 

1.99680 x 10
-2 

1.99680 x 10
-2 

1.99680 x 10
-2 

1.99680 x 10
-2 

1.99680 x 10
-2 

2.65114 x 10
-8

 

7.29819 x 10
-8

 

1.20366 x 10
-7

 

1.68309 x 10
-7

 

2.16406 x 10
-7

 

0 

3.46945 x 10
-18

 

0 

3.46945 x 10
-18

 

1.04083 x 10
-17

 

0.5 0.1 

0.2 

0.3 

0.4 

0.5 

1.99550 x 10
-2 

1.99550 x 10
-2 

1.99550 x 10
-2 

1.99550 x 10
-2 

1.99550 x 10
-2

 

1.36124 x 10
-8

 

4.60129 x 10
-8

 

1.08644 x 10
-7

 

1.73664 x 10
-7

 

2.40318 x 10
-7

 

0 

3.46945 x 10
-18

 

6.93889 x 10
-18

 

6.93889 x 10
-18

 

1.04083 x 10
-18

 

x t Exact Solution 5-term ADM Abs. Error 3-term NIM Abs Error 

0.1 0.1 

0.2 

0.3 

0.4 

0.5 

1.99980 x 10
-2 

1.99980 x 10
-2 

1.99980 x 10
-2 

1.99980 x 10
-2 

1.99980 x 10
-2

 

1.31265 x 10
-8 

2.46564 x 10
-8

 

3.60575 x 10
-8

 

4.72723 x 10
-8

 

5.82447 x 10
-8 

 

3.46945 x 10
-18

 

0 

0 

0 

3.46945 x 10
-18

 

0.2 0.1 

0.2 

0.3 

0.4 

0.5 

1.99920 x 10
-2 

1.99920 x 10
-2 

1.99920 x 10
-2 

1.99920 x 10
-2 

1.99920 x 10
-2

 

2.69869 x 10
-8

 

4.99471 x 10
-8

 

7.27082 x 10
-8

 

9.51513 x 10
-8

 

1.17157 x 10
-7

 

0 

3.46945 x 10
-18

 

6.93889 x 10
-18

 

3.46945 x 10
-18

 

3.46945 x 10
-18
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Table 3. Comparison between 3-term NIM errorand5-term ADM errorfor eq.(22) (x0 = 0.0,k = 0.1) 

 

 

 

 

 

0.3 0.1 

0.2 

0.3 

0.4 

0.5 

1.99820 x 10
-2 

1.99820 x 10
-2 

1.99820 x 10
-2 

1.99820 x 10
-2 

1.99820 x 10
-2

 

3.50406 x 10
-8

 

6.95085 x 10
-8

 

1.03998 x 10
-8

 

1.38303 x 10
-8

 

1.72205 x 10
-8

 

0 

3.46945 x 10
-18

 

3.46945 x 10
-18

 

3.46945 x 10
-18

 

6.93889 x 10
-18

 

0.4 0.1 

0.2 

0.3 

0.4 

0.5 

1.99680 x 10
-2 

1.99680 x 10
-2 

1.99680 x 10
-2 

1.99680 x 10
-2 

1.99680 x 10
-2 

2.65114 x 10
-8

 

7.29819 x 10
-8

 

1.20366 x 10
-7

 

1.68309 x 10
-7

 

2.16406 x 10
-7

 

0 

3.46945 x 10
-18

 

0 

3.46945 x 10
-18

 

1.04083 x 10
-17

 

0.5 0.1 

0.2 

0.3 

0.4 

0.5 

1.99550 x 10
-2 

1.99550 x 10
-2 

1.99550 x 10
-2 

1.99550 x 10
-2 

1.99550 x 10
-2

 

1.36124 x 10
-8

 

4.60129 x 10
-8

 

1.08644 x 10
-7

 

1.73664 x 10
-7

 

2.40318 x 10
-7

 

0 

3.46945 x 10
-18

 

6.93889 x 10
-18

 

6.93889 x 10
-18

 

1.04083 x 10
-18
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x t Exact Solution 5-term ADM Abs. Error 2-term NIM Abs Error 

0.1 0.1 

0.2 

0.3 

0.4 

0.5 

2.66627 x 10
-2

 

2.66627 x 10
-2 

2.66627 x 10
-2 

2.66627 x 10
-2 

2.66627 x 10
-2

 

6.61289 x 10
-9

 

1.38091 x 10
-8

 

2.10236 x 10
-8

 

2.82628 x 10
-8

 

3.55331 x 10
-8

 

1.36515 x 10
-9

 

2.73030 x 10
-9 

4.09545 x 10
-9 

5.46061 x 10
-9 

6.82576 x 10
-9

 

0.2 0.1 

0.2 

0.3 

0.4 

0.5 

2.66507 x 10
-2

 

2.66507 x 10
-2 

2.66507 x 10
-2 

2.66507 x 10
-2 

2.66507 x 10
-2

 

1.30572 x 10
-8

 

2.74896 x 10
-8

 

4.19330 x 10
-8

 

5.64022 x 10
-8

 

7.09127 x 10
-8

 

2.72921 x 10
-9

 

5.45842 x 10
-9

 

8.18763 x 10
-9

 

1.09168 x 10
-8

 

1.36461 x 10
-8

 

0.3 0.1 

0.2 

0.3 

0.4 

0.5 

2.66307 x 10
-2

 

2.66307 x 10
-2

 

2.66307 x 10
-2

 

2.66307 x 10
-2

 

2.66307 x 10
-2

 

2.20865 x 10
-8

 

4.37197 x 10
-8

 

6.52333 x 10
-8

 

8.66610 x 10
-8

 

1.08043 x 10
-7

 

4.09109 x 10
-9

 

8.18218 x 10
-9

 

1.22733 x 10
-8

 

1.63644 x 10
-8

 

2.04554 x 10
-8

 

0.4 0.1 

0.2 

0.3 

0.4 

0.5 

2.66027 x 10
-2

 

2.66027 x 10
-2 

2.66027 x 10
-2 

2.66027 x 10
-2 

2.66027 x 10
-2

 

3.82381 x 10
-8

 

6.68601 x 10
-8

 

9.49483 x 10
-8

 

1.22581 x 10
-7

 

1.49860 x 10
-7

 

5.44979 x 10
-9

 

1.08994 x 10
-8

 

1.63491 x 10
-8

 

2.17988 x 10
-8

 

2.72485 x 10
-8

 

0.5 0.1 

0.2 

0.3 

0.4 

0.5 

2.65668 x 10
-2

 

2.65668 x 10
-2

 

2.65668 x 10
-2

 

2.65668 x 10
-2

 

2.65668 x 10
-2

 

6.78327 x 10
-8

 

1.02954 x 10
-7

 

1.36620 x 10
-7 

1.69003 x 10
-7

 

2.00334 x 10
-7

 

6.80396 x 10
-9

 

1.36079 x 10
-8

 

2.04119 x 10
-8

 

2.72158 x 10
-8

 

3.40198 x 10
-8

 

 

Table 4. Comparison between 3-term NIM errorand5-term ADM errorfor eq.(30) (x0 = 0.0,k = 0.1) 
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IV CONCLUSION 

 

In this paper, New Iterative Method has been successfully used for obtaining the analytic solutions for Lax 

equations and Sawada-Kotera KdV equations of fifth and seventh orders. NIM solutions are much accurate,as its 

numerical solutions are closer to the exact solutions than the solutions derived byHPM and ADM. The same has 

also been validated by the graphical comparison of the NIM solutions with the exact solutions. Further, NIM 

solutions are computationally efficient as it gives good numerical approximation by considering 2 or 3-terms 

only. NIM solutions, as obtained in section 3, are shown to be fast and direct as there is no overhead to compute 

additional terms,such as adomian polynomial in ADM and construction of homotopy in HPM. 
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