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ABSTRACT 

With the growth of internet and the information system domain, the number of people who use internet services 

like social networking, shopping, banking and recommendations have turned to be unimaginable. One of the 

pertinent research areas in travel recommendation domain is the travel itinerary recommendation. This leads to 

the need for an efficient and effective travel itinerary recommendation system. In this paper, we propose such a 

system based on a hybrid method. The system is built based on a parallel design making use of the mapreduce 

paradigm. An exhaustive analysis on the evaluation of the system shows that the system is proficient enough to 

provide a more appropriate travel itinerary recommendation to the users with much less response time. 
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1. INTRODUCTION 

With the increased adoption of gps enabled devices and gps based services; there is an exponential growth in the 

number of people using the same for various purposes in their day to day life. Recommendation services 

constitute one such field coined up greatly in the context. A scalable location and itinerary recommendation 

system is proposed in this article. The locations are determined based on the location history of the user as well as 

his fellow members in the community. Cold start problem for users is handled by the proposed hybrid 

recommendation system. An apriori based technique is deployed for the same. If there are not enough candidate 

locations for generating the itinerary for the user, sufficient number of most similar locations are added to the 

candidate locations determined, already. The main objective of the Travel Itinerary Recommendation System is to 

assist the customers to find out venues or locations to visit when he/she is planning for a trip in a city or a region. 

The system can also be used when the user is new to the city or the region and have enough time to go for such a 

trip without much of the pre planning. 

Consider a special case of the problem where the user has checked-in to a location currently and he wishes to visit 

some locations in the region where his current location belongs to. It is also assumed that the person has stringent 

temporal and spatial constraints. He has to start from his current location and has to return back to a specified 
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destination. The trip should be completed within a specified stipulated time after visiting maximum locations in 

the region. Now this has turned to be an optimization problem. An example scenario is discussed here. A person P 

has checked-in to ITC Chola in Chennai city. He has actually come to Chennai to attend a conference held in ITC 

Chola. By 5 pm on the same day all his appointments were successfully over and his return flight to his native is 

by 8 pm the next day. He is totally free from 5 pm on that day to 8 pm the next day. So, he can plan for a trip in the 

city covering maximum number of venues in the city matching his preferences and interests. This user can use the 

proposed system to get an optimized itinerary planned for his trip. The system will ask the person to input his 

current location, timing constraints, destination location etc. The system will then find out the location history of 

the user and that of the similar users in similar contexts. The system will then determine the optimized itinerary 

for the user and recommend it to the user. The user can fix the trip according to the itinerary recommended. The 

user can go for the trip and complete the trip within the stipulated time. The itinerary suggested will contain the 

locations matching his preference and it will be optimized in such a manner that it will cover maximum locations 

in the region with minimum time and minimum cost and with maximum possible time availed in each location as 

per each location’s significance with respect to the user preference.  

While modeling traveler’s itinerary and time, this problem needs to take into account certain subjective or context 

dependent factors like traveler’s preference on venues or locations and his/her emotion. This makes it impossible 

to model the system with an objective function. So, this problem can be regarded as a tacit multi objective 

decision making problem. In these kinds of problems, the target cannot be quantified and will be subjective and 

dependent on the context and the user involved. For instance, the user’s mood or preferences may vary 

dynamically based on which the suggestions should also differ. That is why we refer to this problem as a 

personalized travel itinerary recommendation system. 

LBSN is a network consisting of individuals and their interconnections defined in terms of their relations. The 

peculiarity of LBSN is that they generate and propagate location-tagged data. This data could be extracted and 

used for deducing the behavior of users, predict items, locations or even travel itinerary to the users. The 

location-tagged data along with other prominent attributes could well model the user behavior in the system. The 

other attributes that are taken into account are viz. time, distance, and rank of the location with respect to the user. 

The rank of the location is determined primarily by using the tips left by the users who have already visited the 

location. The tips may have positive or negative polarity. The polarity will influence positively or negatively the 

other user who is trying to get a suggestion for making an itinerary over the same or nearby similar locations. 

Some of the prominent LBSNs are viz. Facebook Places, Google Plus, Google Latitude, Gowalla, Brightkite, 

Twitter, Flickr, Foursquare etc. They share information in the form of text, image, audio or video. Amidst the 

dangers of privacy concerns, these location-tagged data are widely used in various applications. These sites are 

able to share the check-in, check-out details of users in specific locations and their tips or responses in these 

checked-in locations to others who would use this data. Some of the sites provide necessary APIs for users to 

access the required data and while for some other sites, stored data are available for download.  In either case the 

aspirants are able to access and manipulate the data for further use. They could analyze the data and determine the 

check-in patterns of users or the personal preferences of the users. These preferences are a better means towards 

finding and recommending locations/ itineraries to users or similar users in the future. There are other attributes 
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like time, cost, distance, connectivity, season, weather conditions etc. which may be considered along with the 

check-in pattern to better recommend the locations/ itineraries to the users. Here, the authors assume that the 

places already visited by the users need not be recommended to them and it is better to recommend locations/ 

itineraries which are not visited by them but by the members of the community to which the user belongs. The 

locations already visited by users are known to them and studies reveal that at least 60% of the people prefer to 

visit new locations rather than already visited locations.  

The authors have used data from Foursquare, Brightkite and Gowalla etc. for various experiments and studies. 

Foursquare allows users to check-in at specific locations and publish their check-in details to Twitter/ Facebook. 

The aspirants could download the necessary data from either Twitter/ Facebook or from Foursquare directly 

satisfying necessary authentications [1]. 

The organization of topics in this article is as follows: the next section discusses about the related works. 

Followed by this is the proposed methodology. Subsequent to that are the experimental results, the conclusion, 

acknowledgement and the references. 

II RELATED WORKS 

Studies show that users with similar location history are more likely to have similar interests and preferences [2] 

[3]. Eagle and Pentland justifies in their articles that the user's historical behavior is a strong indicator of the user's 

preferences [4] [5]. This suggestion is more strongly supported by the work by [6] which finds out that a user's 

historical behavior gathered in an LBSN is more effective and accurate than his online behavior in giving a user's 

preferences, patterns, interests and experience. Location recommendation system using Collaborative Filtering 

(CF) model is proposed by [7]. These systems give personalized recommendations for locations by taking into 

consideration other users' ratings. Each work gives a different version or enhancement to the basic CF method. 

But most of these systems fail miserably in handling the cold start problem. [8] presents a location 

recommendation system that incorporates the user's preferences, the user's social connections and the geographic 

distance between the user and the candidate locations. But, these existing systems are not taking into account the 

comments given by the visitors on these locations which play a vital role in influencing their friends. These 

systems suffer from problems viz. cold start problem and sparse rating. 

A greedy based strategy for community detection is discussed in [9]. This algorithm consumes more time for 

execution and it does not consider the user preferences. Conflict graph based community detection is explained in 

[10]. This work also does not take into account the user preferences. It also consumes more execution time. [11] 

discusses about TOP and Naïve Bayes algorithms for ranking the locations/items for recommendation. 

[12] discusses a work on automatic generation of itineraries from POI graph created from photo streams taken by 

users. But it gives only an approximate solution. Its execution time is also more. It also requires more user 

intervention. [13] proposes an automated itinerary planning system for holiday travel. This is purely a commercial 

model which requires more user intervention. It also consumes more execution time. [14] proposes a travel 

package recommendation system using COPE. This system deploys genetic algorithm which requires more 

execution time. [15] proposes an interactive itinerary planning system. It requires more user intervention. It 



 
 

651 | P a g e  

 

refines the recommendation in each step by considering feedback from the users in each step. User reluctance in 

giving the feedback is an issue. [16] has proposed a customized travel planner using mapreduce and 

approximation algorithms. The system generates single day itineraries in one stage and combines them to give 

multiday itineraries in the second stage. But it does not incorporate mapreduce in all stages. It also does not 

consider the tips or the responses given by users for determining the locations in the itinerary. It also requires 

more user intervention. [17] proposes an automatic travel itinerary planning system for domestic areas of Taiwan. 

It uses greedy approach for location identification. But it consumes more execution time. [18] proposes a travel 

package recommendation system using near POI and ranking technique. But its precision is low. 

III THE PROPOSED ITINERARY RECOMMENDATION SYSTEM 

It is a hybrid recommendation system which integrates the essence of Collaborative Filtering based and content 

based systems.  The tips about different locations given by the users are considered to enhance the 

recommendations. The user location history and the tips left by the users at these locations are the main inputs for 

the system. This is a stand-alone itinerary recommendation system.  This method gives a recommendation which 

depends on the individuals’ behavior and location history. Also, it contributes to the formation of personalized or 

customized aggregations in which the diversity in the source or the input tastes will enhance the recommendation. 

 

 

Figure 1: Itinerary Recommender System Architecture 

The architecture of the proposed itinerary recommendation system is given in fig. 1. It has three different 

segments viz. community discovery, location recommendation and the itinerary recommendation. An overview 

of each the three segments are given in the following subsections. 
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3.1 Community Discovery 

This segment is responsible for determining the community to which the user belongs. The community 

discovery is significant in the sense that the recommendation is based on the responses given by the fellow 

members of the community to the locations already visited by them.  

3.1.1 Input data generation 

The input data is the user check-in log extracted from the location based social networks. The authors have asked 

some scholars whom they have acquaintance with, to create account in foursquare, a prominent location based 

social network. Then, these users were asked to share their check-ins in Twitter. The TwitterAPI was used to 

extract the check-in data shared by the corresponding users. This data was used for the experimental analysis. 

Also, the Stanford University Research Centre has published quite a lot of dataset spanning various domains for 

free download. They have published dataset from Gowalla and Brightkite which are famous location based social 

networks. The authors have gracefully used these datasets downloaded from the mentioned sites for their 

experiments. 

3.1.2 Location History Computation 

The input dataset obtained consists primarily of user check-ins at different locations. It includes the user id, 

location id, check-in and check-out time and the comments/tips left by them at these locations. These are in fact 

the individual check-ins and not usually part of the itinerary, but, some of them may be. So, these check-in logs 

are analyzed and location history pertaining to the users is created. Location history is the sequence of locations 

visited by the users with their details. 

3.1.3 Apriori-based Community Discovery 

Community Discovery is one of the pertinent functions in the first segment of the recommendation system. This is 

implemented by means of mapreduce paradigm to make the system more effective and efficient. The user’s 

community is being determined from the location history of the users. An enhanced apriori based algorithm is 

deployed for this. This is with the notion that, there is more chance that similar users will visit same or similar 

locations than others. Based on this fact, the users are grouped into different clusters in a hierarchical manner. 

Initially, the frequent locationsets are formed using the enhanced mapreduce based apriori algorithm. Then the 

users are identified to be in different groups or communities based on the presence of these locationsets in their 

location history. So, one user may be in different communities simultaneously. But, during candidate location 

generation, the community with which he/ she is associated by means of the most frequent locationset is taken 

first and then the others till the least frequent locationset.  

3.2 Location Recommendation 

The second segment of the itinerary recommendation system is the location recommendation segment. This 

segment is meant to identify and recommend the locations from which the itinerary may be generated and 

recommended to the users. 
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3.2.1 Candidate Location Generation 

Candidate locations are the locations visited by at least one of the fellow members of the community to which the 

user belongs. The peculiarity of these locations is that, these locations should not be visited by the users for whom 

the recommendation is to be made. This is with the assumption that the locations already visited by the user will 

be known to the user than other locations and these need not be recommended to the user again. Also, studies 

reveal that more than 65% of the users prefer to go to new locations than the already visited locations. This task is 

also implemented using a mapreduce algorithm. This makes the task execute faster than the conventional 

algorithm. 

3.2.2 Location Ranking 

Location ranking is a laborious task in this segment. So, this task is also implemented using a mapreduce 

algorithm. While realizing this task, the tips left by the users in these candidate locations are analyzed. Then, their 

sentiment score is calculated along with its decay. The decay of a tip refers to the loss in relevance of the tip over 

time. The sentiment score is multiplied by the decay and they are summed up for each of the locations. Then this 

value is normalized over a stipulated period. This aggregated weight is regarded as the rank of the location. This 

parallel algorithm contributes to the reduction in execution time of the system. 

3.2.3 Probabilistic Neural Network-based Location Recommendation 

The next phase consists of a probabilistic neural network based recommender system. We have converted the 

recommendation problem as a classification problem with the regarded as output classes. These locations are 

labeled categorically with their location names. Probabilistic neural networks are faster in training and their 

accuracy is in classification is far better than its counterparts. Its architecture is given in fig. 2. PNN consists of 

four layers of neurons. The input layer accepts input given in the form of a feature vector which is a 6-tuple, F = 

{userid, sim_userid, day_of_week, time_slot, rank, locationid}. Next layer is the hidden layer which takes input 

from the input layer and the learning is performed in this layer. The output from this layer is passed to the 

summation layer which is responsible for inducing the probability of the features for being in different classes/ 

locations. The output layer classifies the particular input set into the correct class/ location. The classified location 

is recommended to the user. The user who anticipates only the individual location recommendation may carry on 

with this recommendation. The system can be tuned to give recommendations consisting of one or more locations 

depending on the context. This is a subsidiary version of the eventual system.  
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Figure 2: Architecture of Probabilistic Neural Network 

3.3 Itinerary Recommendation 

The last segment of the itinerary recommendation system is the itinerary recommendation segment. The itinerary 

is generated out of the location recommended to the user. Apart from this input, this segment takes external inputs 

for improved itinerary generation and recommendation. 

3.3.1 Itinerary Computation using backtracking and pruning algorithm 

This is the most prominent task in the entire system. It accepts inputs like the starting location, the destination 

location and the time available for the itinerary, from the user. It also accepts external inputs like the weather 

conditions of the location and the visit timing of the particular location and whether the location is indoor or 

outdoor. The initial itinerary consists only of the starting location. Then the system picks each of the locations and 

checks its feasibility of inclusion in the itinerary. While including a location in the itinerary, the location type is 

checked to be either indoor or outdoor as weather conditions usually affects the outdoor locations. The visit 

timing at the location is also a factor to be considered. Some locations/venues will have stringent timing 

requirements to be satisfied for the visit while some others may have desirable timing for visits. The system takes 

into account all these factors. If the location selected satisfies all these criteria then the location is added to the 

current itinerary. The time for the whole itinerary is updated. The time taken to reach the location from the current 

path and the average time spent by the visitors in this location are added to the time of the current itinerary. The 

cost of the itinerary is also updated in the same way by adding the cost to reach the location from the current 

itinerary and the cost incurred in the location during the visit. The system then picks the next location and does the 

same operations. The total time of the itinerary should not exceed the time available for the itinerary. If some 

itinerary violates this condition then that itinerary is dropped and the itinerary computation proceeds by checking 

with the next location. Meanwhile, if an itinerary reaches the destination, then the itinerary is saved to the 

itinerary list. The destination is removed from the itinerary. This is called as pruning the itinerary. The system 

then continues to find the next itinerary with the other locations. This is called as backtracking. The system is 
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constrained by the fact that the itinerary recommended should contain optimum number of locations and should 

provide at least a time which is not less than the average time spent by the users who have already visited the 

location. The set of itineraries is then given to the next phase for determining the optimal itinerary for 

recommendation.  

3.3.2 Genetic Algorithm-based Optimal Itinerary Recommendation 

Genetic Algorithm is a technique used for finding the optimum itinerary from the partial solutions which are the 

itineraries in the itinerary list. Genetic Algorithm operates on the principle of natural evolution. The operands are 

called as chromosomes. The collection of chromosomes constitutes the population. The chromosomes represent 

the partial itineraries. A fitness function is associated with the algorithm. The fitness function defines the quality 

of the itinerary. The itineraries are ranked and the two best itineraries are selected for crossover operation. A new 

itinerary is formed as a result of the crossover operation. Its fitness will be better than that of the parent itineraries. 

The weak itineraries are removed from the itinerary set. This process is continued until the optimal itinerary is 

found out. The fitness function for the application is defined as below.  

).))..(..(()( 4321
max

costIwtraveltimeIstaytimeIwtimeIwnum_locsIwIf   

 (1) 

The optimal itinerary is then recommended to the user. Since this is a personalized itinerary recommendation 

system, the recommendation will vary for each of the users. 

IV THE MAJOR ALGORITHMS IN THE SYSTEM 

The key algorithms instigated in the system are discussed in detail in this section. 

Algorithm1: Location_Recommendation ( ) 

Input: (1) check-in_log (2) user ru  

Output: A List of recommended locations for user ru  

Steps 

1. Start 

2. Access the check-in log crawled from LBSNs 

3. LH ← Φ for all users  //Location History 

4. for each user iu  

a. Compute_LH( check-in_log) 

b. end for 

5. ()cationsetCompute_lo  

6. ()_ DiscoveryCommunity  

7. if c = Φ for iu then 

a. )(_ ruCommunityFindc  
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b. }{ rucc   

c. end if 

8. for each cluster c in C do // C is the set of all communities 

a. )(_ cprofileComputeprofilec   

b. )(__ cc profileUserrepComputeREP   

c. )(_ rc uCommunityComputeu   

d. )(__ cc ulocationscandidateComputeL   

e. )(_ cR LnkLocationRaComputeL   

f. end for 

9. Pass 
RL to Itinerary Recommendation phase for itinerary computation 

10. Submit the ranked locations and associated data to PNN for finding the location to be recommended 

11. Recommend the location given by PNN as the output //Output for location recommendation 

12. end 

Algorithm2.1: Compute_locationset ( ) 

Map Task: // One for each split 

Input: Si // Split i 

Output: <key, 1> pairs where key is an element of the candidate locationset 

Steps 

1. start 

2. map( IntWritable key, Text value, Context context) // Map function 

a. String []inputTokens ← value.toString().split(“\t”) 

b. String userid ← inputTokens[0] 

c. String locationid ← inputTokens[1] 

d. for each element l in L // L ← powerset of all locationid 

i. context.write( l, 1) 

ii. end for 

e. end map 

3. end 

Reduce Task: 

Input: <key2, value2> pairs, where key2 is an element of the locationset and value2 is its occurrence in each split 

Output: <key3, value3> pairs, where key3 is an element of the locationset and value3 is its occurrence in the 

whole dataset 

Steps 

1. start 

2. reduce(IntWritable key2, Iterable<Text>  value2) //Reduce function 

a. count ← 0 
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b. while ( value2.hasNext( )) do 

i. count← count+ value2.getNext( ) 

ii. end while 

c. context.write( key2, count) 

d. end reduce 

3. end 

Algorithm2.2: Community_Discovery ( ) 

Map Task // One for each split 

Input: <key3, value3> pairs, where key3 is an element of the locationset and value3 is its occurrence in the whole 

dataset, check-in_log  

Output: <key3, userid> pairs, where key3 is an element of the candidate locationset and userid  

Steps 

1. start 

2. map( IntWritable key3, Text value, Context context) // Map function 

a. for each line key3 in LHi 

i. context.write( key3, userid) 

ii. end for 

b. end map 

3. end 

Reduce Task 

Input: <key3, value3> pairs, where key3 is an element of the locationset and value2 is userid if key3 is in LH 

Output: <key3, value3> pairs, where key3 is an element of the locationset and value3 is its occurrence in the 

whole dataset 

Steps 

1. start 

2. reduce(IntWritable key3, Iterable<Text>  value3) //Reduce function 

a. C ← Φ 

b. while ( value3.hasNext( )) do 

i. u ← value3.getNext( ) 

ii. }{uCC   

iii. end while 

c. context.write( key3, C) 

d. end reduce 

3. end 

Algorithm3: Compute_candidate_locations ( ) 

Map Task: // One for each split 
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Input: (1) Si // Split i (2) cu - the community for iu , (3) user iu  

Output: <key, 1> pairs where key is an element of the candidate locationset 

Steps 

1. Start 

2. map( IntWritable key, Iterable <Text> value, Context context) // Map function 

a. String []inputTokens ← value.toString().split(“\t”) 

b. String userid ← inputTokens[0] 

c. String locationid ← inputTokens[1] 

d. for each cuu'  

i. if iu has not visited the location with id as locationid and 'u has visited 

1. context.write( locationid, 1) 

2. end if 

ii. end for 

e. end map 

3. end 

Reduce Task: 

Input: <key2, value2> pairs, where key2 is a location and value2 is its occurrence 

Output: <key3, value3> pairs, where key3 is a location and value3 is its occurrence in the LH of the community 

members 

Steps 

1. start 

2. reduce(IntWritable key2, Iterable<Text>  value2) //Reduce function 

a. count ← 0 

b. while ( value2.hasNext( )) do 

i. count← count+ value2.getNext( ) 

ii. end while 

c. context.write( key2, count) 

d. end reduce 

3. end 

Algorithm4: Compute_LocationRank ( ) 

Map Task: // One for each split 

Input: (1) Si // Split i (2) cu - the community for iu , (3) user iu  

Output: <key, 1> pairs where key is an element of the candidate locationset 

Steps 

1. Start 

2. map( IntWritable key, Text value, Context context) // Map function 



 
 

659 | P a g e  

 

a. String []inputTokens ← value.toString().split(“\t”) 

b. String userid ← inputTokens[0] 

c. String locationid ← inputTokens[1] 

d. for each LL' do 

i. for each user cuu' do 

ii. )',',(_'. ' uLTipTipExtracttipL u   //tip uploaded by 'u on 'L  

iii. ''. utsL  ← timestamp of the visit/tip by 'u on 'L  

iv. )'.(_ '' uu tipLSentiScoreComputeSS   

v. )/)t'.((1 '' TtsLdecay uu   

 //decay is the loss in relevance of the tip 

 // t is the current time 

 // T is the time range – 5 years 

vi. end for 

vii. end for 

a. )('. '' uuu SSdecayrankpL
i    

b. context.write(
iurankpLL '.,' )  

c. end map  

3. end 

Reduce Task: 

Input: <key2, value2> pairs, where key2 is an element of the locationset and value2 is its occurrence in each split 

Output: <key3, value3> pairs, where key3 is an element of the locationset and value3 is its occurrence in the 

whole dataset 

Steps 

1. start 

2. reduce(IntWritable key2, Iterable<Text>  value2) //Reduce function 

a. rank ← 0 

b. count ← 0 

c. while ( value2.hasNext( )) do 

i. rank ← rank+ value2.getNext( ) 

ii. count ← rank+1 

iii. end while 

d. countrankrankL
iu /'.   

e. context.write(
iurankLL '.,' ) 

f. end reduce 

3. end 
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Algorithm5: Itinerary_Computation ( ) 

//Backtracking with pruning 

Input: (1) A connected graph consisting of recommended locations (2) s - the start location, (3) d – the destination 

location, (4) time_available, time duration of the itinerary 

Output: A set of itineraries 

Steps 

1. Start 

2. Path sItinerarie [] ← Φ ; I ← s; timeP. ← 0; costP. ← 0 

3. NS.push(s) //push to the stack, NS 

4. while ( !isEmpty(NS)) do 

a. 'L  ← NS.pop( ) 

b. nb[]← find_neighbours( 'L ) 

c. NS.push(nb) // Push all the elements to the stack 

d. if isConnected( I , 'L ) and ! I .contains( 'L )  

i. if 'L == d  

1. I  ← )'(. LappendI  

2. timeI.  ← )',(. LIgetTimetimeI   

3. costI.  ← )',(. LIgetCostcostI   

4. Write ( sItinerarie , I , timeI. , costI. ) 

5. )'(. LpruneI  //Remove 'L from the itinerary 

6. continue 

ii. if (( typeL'.  == indoor ) or ( typeL'. ==outdoor && weatherL'.  == OK && timingL'. == OK)) 

1. time  ← )'()',(. LgetTimeLIgetTimetimeI    

2. if availabletimetime _  

3. I  ← )'(. LappendI  

4. timeI.  ← )'()',(. LgetTimeLIgetTimetimeI   

5. costI.  ← )'()',(. LgetCostLIgetCostcostI   

6.  end if 

7.  end if 

iii. end if 

e. end while 

5. WritetoFile( sItinerarie ) 

6. end 

Algorithm6: GA_Optimal_Itinerary_Recommendation ( ) 

//Genetic Algorithm-based Optimal Itinerary Recommendation 
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Input: (1) A set of itineraries 

Output: An optimal itinerary for recommendation 

Steps 

1. Start 

2. Chromosomes are initialized with the itineraries 

3. Compute the fitness function for each of the itineraries 

).))..(..(()( 4321
max

costIwtraveltimeIstaytimeIwtimeIwnum_locsIwIf   

4. Rank the itineraries according to the value of the fitness function 

5. Select best two itineraries as parents based on the rank  

6. Do crossover with probability Cprob 

7. Do mutation with probability Mprob  

8. Retain the new itineraries in the set of itineraries 

9. Remove the itinerary with the least fitness value 

10. if termination condition is not accomplished  then repeat the steps 3 to 10  

else  

a.  Find the best ranked itinerary and recommend to the user 

end if 

11. end 

Algorithm 1 gives the steps for accepting the input dataset and generating the location history for each of the 

users. It then invokes the community detection algorithm. Afterwards, the algorithm invokes the candidate 

location generation and location ranking algorithms. Algorithm 2.2 lists the steps for community discovery. As 

part of community discovery it invokes Algorithm2.1 which generates the frequent locationset. This algorithm is 

an enhanced version of the apriori algorithm for frequent itemset mining. Algorithm 3 is responsible for candidate 

location generation. Algorithm 4 does the location ranking. The ranked locations along with other details are fed 

to the Probabilistic Neural Network for recommendation. The PNN-based recommender system is a classifier 

which takes the input set with the features like the userid, similar user’s id, day and time of the check-in proposed, 

locationid, venueid etc. It then classifies the input data set to the correct location. Algorithm 5 is used for itinerary 

generation. The algorithm is a backtracking algorithm with pruning. It starts with the start location as the only 

location in the itinerary. Then it checks whether each of the locations can be added in the itinerary or not. The 

location added should satisfy certain critical criteria. After finding all the itineraries, they are passed to Algorithm 

6 which is Genetic Algorithm for finding the optimal itinerary. The optimal itinerary is the one which satisfies 

equ. (1). This itinerary is recommended to the user. All the algorithms except algorithm 5 are mapreduce based 

algorithms. They will be executed in parallel, thereby reducing the execution time.  

IV EXPERIMENTAL EVALUATION AND RESULTS 

As part of the experimentation and performance analysis, the mapreduce algorithms were executed on a 4-node 

Hadoop cluster. The cluster was setup with all the four nodes of same hardware and software configuration. All 

thenodes were of Intel core i7 2.3 GHz processor with 8 GB RAM. The OS is Ubuntu 15.04 and the Hadoop 
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version is Hadoop1.2.1. The dataset was collected from Foursquare and also from Twitter. Another set was 

downloaded from Stanford University site. The experimental analysis is the same procedure followed in [1]. 

The proposed recommendation system using hybrid technique is experimentally compared with the systems 

which are based on collaboration filtering technique and content based techniques. Significant improvement in 

performance is obtained. As part of a comprehensive analysis, particular nodes with known activity history, 

interests and profiles were selected and the system was made to recommend locations for the known user. Our 

system is found to give more accurate recommendations compared to its counterparts.  The users were asked to 

check-in at a particular location and post a query for the recommendation process to get initiated. The response 

times were analyzed and studied in detail. 

Figure 3 - 7, shows the comparison of execution time between the proposed and the existing algorithms 

implemented in the personalized itinerary recommendation system. It is obvious that the proposed algorithm for 

each of the modules in the system clearly outperforms the other algorithms being compared.  

 

 

 

Figure 3: Comparison of execution time for community discovery algorithm with varying 

number of users 
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Figure 4: Comparison of execution time for location ranking algorithm with varying number of 

users 

 

 

Figure 5: Comparison of execution time for location recommendation algorithm with 

varying number of users 
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Figure 6: Comparison of execution time for itinerary computation algorithm with 

varying number of users 

 

 

Figure 7: Comparison of execution time for itinerary recommendation algorithm with 

varying number of users 
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Figure 8: Comparison of execution time for itinerary recommendation algorithm with 

varying number of users 

 

Figure 8 gives the overall system performance of the personalized itinerary recommendation system. The system 

gives better performance under varying number of users. 

V CONCLUSION 

This article presents a novel system for Location and Itinerary Recommendation on Location based Social 

Networks. The recommendation is done by considering the users’ preferences and location history. The system 

also takes into account the tips left by the users who have already visited the locations. The system could give 

good recommendations in comparatively less response time. 
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