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ABSTRACT  

Recently seven organic conductors have shown A=A0λe
-bλ

 type function in UV-Visible spectra which can be related 

with photometallic nature and dynamic with Kohn anomaly. Other four organic and metal – organic charge transfer 

complexes have shown A(k) = A0kexp(-bk) type function in the infrared range which can be related with Peierls 

distortion.  Some other conductors show oscillatory behaviour of electronic conduction and light absorption against 

temperature, pressure and frequency which can be explained by complex band gap.  The Fourier transforms are 

Cauchy distributions which are symmetric and the phenomena are related with the amplitude and phase modulation 

of charge density waves. Further consequences of such a function leading to an equation for transition temperature 

are presented after  proving certain conditions for maximum conductivity when temperature, frequency and pressure 

are varied. The Gaussian bands are also analyzed to prove conditions for the Frohlich sliding mode. We get  

transition temperature for Frohlich super conduction. 

Keywords: UV-Visible And IR Spectra, Phase Modulation, Fourier Transform, Beta Density, 

Transition Temperature 

I. INTRODUCTION 

Recently seven polyiodide chain complexes-three based on small organic molecule and four finite macromolecules 

or biopolymers-have shown A=Aλe
-bλ

 where A is absorption in the UV-visible spectra [1, 2] TTF-TCNQ 

(TTF=tetrathiafulvalinium, TMTSF-DDQ (TMTSF=tetramethyl tetraselena-fulvalinium, DDQ=2,3-dichloro-5,6-

dicyano-p-benzoquinone) TCNQ=7,7,8,8-tetracyano-p-quinodimethane and two CT complexes of Cu(N-CH3-

salim)2 have shown [4] A(k)=A0ke
-bk

 function where k is wave number in the infrared range [3]. This behaviour was  

explained with Peierls instability. Present work is regarding theory of light-induced Peierls distortion [5] and Kohn 

anomaly [6], the concept of complex band gap which is related with dynamic Kohn anomaly [7] and over-damped 

cases leading to static distortion. 
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It is shown that function has relation with lattice distortion due to Peierls instability [8]. The function is the Erlang 

distribution in statistics and having symmetric Cauchy distribution due to Cauchy-distorted lattice similar to a 

Gaussian-distorted lattice in metal chain in metal-organic chelates like  Ni (Hdmg)2 where Hdmg-dimethylglyoxime 

under high pressure. This function is also same which appears in high pressure resistivity [9] as  = 0 Pe
-bP

 and 

even low temperature conductance C=(1/R) = C0 T e
-bT

 [10]. 

Recently light induced Peierls instability leading to A()=A0e
-b

 function is observed in seven organic  conductors. 

A theory of light induced Peierls distortion is developed here to interpret some of the under-damped cases (V>0) in 

which oscillatory behaviour of electronic conduction and light –absorption is found. In over damped cases, (V0) b 

is real and the exponential fall in absorption depending on the value of b is found. 

This theory is extended here to obtain breaking temperature by  comparing KBTc with the magnetic energy or power 

dissipation.  

II. EXPERIMENTAL  

The function A(λ)=A0λe
-bλ

 was found to fit in the UV-visible spectra of benzophenone-KI-I2, deoxycholic acid-KI-

I2, lithocholic acid-KI-I2, stearic acid-KI-I2, tripalmitin—KI-I2, lysozyme-KI-I2 and folic acid – KI-I2 [2], while  in 

TTF-TCNQ, TMTSF-DDQ and two CT complexes of Cu (N-CH3-Salim)2 A(K)=A0ke
-bk

 was found to fit in the IR 

spectra [3]. This function is the same which appears in high pressure resistivity and even low temperature 

conductivity [6,9]. The function is recognized as Erlang distribution in statistics. The Fourier transform or  spectral  

function is  a symmetric Cauchy distribution [11] which shows there is  a Cauchy distorted lattice making a linear 

chain inhomogeneous. 

Apart from this, an oscillatory behaviour of electronic conduction and light absorption was found with temperature, 

pressure or frequency as variables. Benzidine-DDQ showed oscillations in resistivity vs temperature eventually band 

gap going to zero as in two dimensional systems [12], transition metal dichalcogenide showed oscillations in 

resistivity with applied pressure [13], cadmium selenide showed oscillations in absorption with wavelength, folic 

and folic acid-KI-I2 showed oscillations in infrared spectra [13], metal-free phthalocyanine and its DDQ complex 

showed oscillations in infrared spectra [14], and resistivity of some materials showed oscillations as the applied 

magnetic field was increased [15]. These phenomenon of oscillations was found for imaginary and  repulsive 

potential. Oscillations in absorption and conduction are explained with - relations.  

An equation is derived for second order fluctuation in phase angles which is also related with oscillator strengths. 

The oscillator strength is related with the first derivative spectra [16]. This is the first step towards  fluctuation 

theory of elementary excitation. If  electro magnetic (light) waves is incident, the potential energy is  , in high 

pressure studies V is to be replaced by elastic energy proportional to P
2
 and in low temperature studies band gap 
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changes by Eg(T)  Eg (0) - T and it reduces to zero in 2D conductors. For V0, there is repulsive interactions 

among electrons, photons and phonons then oscillations arise.   

When -cyclodextrin-KI-I2 amylose-iodine and (coumarin)4-KI-I2 were studied for resistivity under high pressure, it 

showed (P) = 0 P e
-bP

 type behaviour which is Erlang distribution. This may be due to particle-size distribution in 

these nano-materials or due to pressure induced Peierls distortion as explained elsewhere [8] because the Fourier 

transform  or spectral function in deformation is symmetric Cauchy distribution.    2 2

0x b b V    where 

V is displacement (strain) or volume change. Benzidine-TCNQ showed beta density in conductance  C(T) = C0   

T
1/2

(1-T

 )

1/2
 under high pressure above 70 kilobars where T


=(T-a)/b in temperature range which is beta density. 

Some other complexes such as DTN, DTN-I2,pyrene-2I2, anthracene-TNB(trinitro benzene) and -cyclodextrin-KI-

I2 as well as amylose-iodine (both at 1000 Kz) showed half-power and square-power beta densities with 

   
1/ 2

1/ 2 1P AP P     and    
2

2 1P AP P     where  P P a b   . Here a general equation is 

derived for resistivity or conductivity where half=power beta density appears as amplitude modulation of charge 

density waves. 

Apart from the above properties, some macromolecular biomolecules showed half-power beta density, i.e. 

 
1/ 2

1/ 2

0 1A A K K   in the infrared spectra where  K K a b   , such as steric acid,stearic acid –KI-I2, 

Linoleic acid-KI-I2,Arachidonic acid – KI-I2, tripalmitin-KI-I2, lysozyme-KI-I2, cytochrome c, cytochrome c – 

TCNQ, Cytochrome c – DDQ, Valinomycine-I2, gramicidine-I2, -carotene, etc [2] which appear due to general 

formula for amplitude modulation of CDWs. These beta densities were explained due to polaron hopping in 

macromolecular solids. 

Finally in the present work a Gaussian equation appearing in many metal-organic conductors in infrared range and 

in some organic conductors in the absence of electron-phonon resonance is used to calculate width of the Gaussian 

and also transition temperature for a large width Gaussian band which nearly becomes a Cauchy distribution. 

III. THEORETICAL BACKGROUND 

The pressure dependence of electrical resistivity of several organic conductors such as -cyclodextrim-KI-

I2.4H2O,amylose-iodine and (coumarin)4-KI-I2 as well as benzidine-TCNQ have shown 
bPAPe   type function 

where  is the resistivity and P is the applied pressure. This is an Erlang distribution is statistics. It is  an asymmetric 

curve but its Fourier  transform is a Cauchy distribution which is symmetric. Considering volume as a 

thermodynamic conjugate volume and as a Fourier conjugate, 
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( )
2 2

b

V
b V

 


 
 
 
 

                                                                                                                                                         (1) 

V   is volume. Lattice distortion leads to inhomogeneous chain for charge transport. It is a Cauchy distorted lattice 

similar to a Gaussian distorted lattice of metal chains in Ni(Hdmg)2. Nickel chains are hard metal chains, and iodine 

chains are soft. Cauchy distortion occurs in soft chains which can be derived as increase in width of a Gaussian.    

By putting the mean free path λ to be limited to wavelength of charge density wave. ~1/k where k is wave number 

of charge density wave (CDWs). Then  

2 2
2 ( )

2 2

k m E V

ne ne


 




 


 
                                                                                                                                         (2) 

V can be screened-Coulomb potential with the Thomas-Fermi screening constant which  shows that the kinetic 

energy of charge carriers is lost in screening the distorted lattice [8, 17]. 

In the UV-visible spectra of organic and biomolecular polyiodide chain complexes 
0

bA A e      type Erlang 

distribution is found where  is wavelength. The spectral function is like Drude model, because 

 2 2

0( )A k A b b k   is similar to  2 21ac dc      due to =(2c)/, this is equivalent to 

 
2

221

dc
ac

c









 

                                            (3a) 

 

2 2

2 22 2 2 2
4 0

dc dc
ac

c

   


  
 

 

                                                                      (3b) 

which is free-carrier absorption in metals, with 1

4

n c



 . 

In TTF-TCNQ, TMTSF-DDQ and charge transfer complexes of Cu(N-CH3-Salim)2 0

bkA A e    function is 

found. This suggests dynamic Kohn anomaly and leads to Cauchy-distorted lattice described by 

   2 2A b b    where  is deformation.                 

 

3.1 Phase modulation and resistivity function 

The spectral function of  

  0

bA A e    is 
0 2 2

( )
b

A k A
b k




                                                                                                                   (4) 

One more integration gives 

1

2 2

1
tan

b k
dk

b k b b


                                                                                                                                                     (5) 
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The phase angle  1tan k b   is related with modulation of CDWs. Combining the above equations 

 
2

0

b i kA e e
k

 


  


 
                                                                        (6a) 

The second order function  leads to 
0

bA e  
type function. This equation can be also written as  

 
2

( ) ln

0

b ikA e
k

 



   


 
                                                                      (6b) 

2 2 ln

0

b k iA A e e                                                                                                           (7) 

Leads to  

0 2 2
( )

b
A A

b







                                                            (7a) 

Using 

1

2 2

1
tan

b
d

b b b







                                (7b) 

Where 
1tan

b

   is the phase angle. Then   
2

0

bk i kA e e
k





 


 
 

 
2

( ) ln

0

k b i kA e
k





   


 
                                                   (8) 

2 2 ln

0( ) k b k i kA A e e     

The equations 8(b) and 8(c) are the differential equations to be solved for   in terms of integral transforms,  

( ) ( )bk ikke dk L ke d                                                                                                                         (9) 

Where   and L are the Fourier and Laplace transforms respectively. Similarly, 

( )bkke d                  (10a) 

( )ikL ke dk                                                                  (10b) 

3.2 Light induced Peierls instability   

The absorption in UV-visible light is given by ()=0exp(-b) while it is given by 0( ) exp( )k k bk    in 

the infrared range. A band gap due to Peierls instability opens up in the infrared range. In UV-visible range charge 

carriers are free and follow the Drude model. Using  -  relation  = n1c/4. The conductivity is given by spectral 

function of (). 

Now we discuss Peierls distortion. The Fourier transfer transform of A0λe
-bλ

 is  
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2 2

0

1

4 b k
A

n c b




 
  

 

                                                                       (11) 

This should be compared with  

2

2 ( )m E V

ne




 



                                                                   (12) 

By comparing constant and variable terms and solving for A0 and b gives  

2

1
0 1/ 2 1/ 2

( ) (4 )

(2 ) (2 )

ne n c k
A i

m E m V

 
 

 
  

 


                                                               (13a) 

1/ 2
E

b i k
V

 
  

 
                                                         (13b) 

The substitutions in 1
0

4

bn c
e   



 
  
 

equation lead to  

1/ 22

1/ 2 1/ 2

( )
exp

(2 ) (2 )

ne E
i k i k

m E m V V


  

 

  
    

   

                                                                                       (14) 

This also proves beta density of the type 
1/ 2 1/ 2(1 )P P    and 

1/ 2 1/ 2(1 )k k    in pressure dependence of 

resistivity and wave-vector dependence of absorption in infrared range which is because of amplitude modulation of 

charge density waves because V=(E-T) or β(P-P0) or V=(k-k0) where β and  are constants. This leads to  E
1/2

 

V
1/2

=k1 P
1/2

 (P-P0)
1/2

 and E
1/2

 V
1/2

=k2k
1/2

 (k-k0)
1/2

 which are beta densities. Such modulations are also found in UV-

visible spectra of charge transfer complexes of lead phthacuamine and infrared spectrum of  biocytine-iodine 

complex. There is correlated hopping occurring in hard chains lead and soft chains of iodine [18, 19]. 

Exactly similarly analysis of 0( ) exp( )k k bk    function   whose spectral function is 

 2 2

0( ) A b b     leads to  

 2

1

0 1/ 2 1/ 2

(4 / )

(2 ) (2 )

ne n c
A i

m V m E

  
 

 
 
 
 


                                                                                                                              (15a) 

1/ 2
e

b
V


 

  
 

                                                                                                                                                           (15b) 

which are analogous to A0 and b in equations (13a and 13b) except that  replaces k. Substitution in conductivity 

leads the same equation (14). 

The imaginary A0 and b shows that oscillations in conductivity and absorbance are possible V>0. When V<0, A0 

and b are real. In that case, we observe sharp rise in λ and k linearly and then exponentially falling  for large λ and k. 

A0 describes amplitude modulation while b describes phase modulation of CDWs. 
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In an idealized metal, a free electron gas follows 
2 2( ) 1q q    in the limit 0q  .                 

The oscillatory behaviour can be explained with complex band gap. Eg=Ec+iEi where E is the electronegativity 

difference. 1 2( )i i gE k ik     .Thus k is complex in =A0ke
-bk

. 

Then 

2
exp

2

e i

B

E iEm

ne k T






  
  

 
                                                                                                                                   (16a) 

1 2

2

( )
exp exp

2 2

g g

B B

E i k ikk

ne k T k T






   
    

   




                                                                                                              (16b) 

=n1c/4 and =(1/) leads to oscillations in light absorption due to  exp 2g i Bi k k T  factor. In the case of 

soft phonon mode the oscillatory behaviour is related with this Q=2KF modes becoming soft. In the present work the 

main aim is to explain light induced Peierls instability and Kohn anomaly. There are cases where under normal light 

or in dark Peierls distortion and Kohn anomaly do not take place but when intense incident light perturbs,  Peierls 

instability appears because the mobile charge carriers drags lattice deformation or virtual phonon cloud. 

3.3 Critical parameters for maximum conductivity 

Thus A=A0λe
-bλ

 and A=A0ke
-bk

 both follow electrical conductivity given by equation (14). Now let V=KBT and for 

maximum conductivity 0
d

dT


 leads to  

 

1

2
3/ 2

2

1 1
0

2 22

g

BB

E E
i T

T KK T

   
       

  

                                                                     (17) 

Eg = Ec + Ei which gives 
2

c c B i BT E K E Ek   implying 
2

i cE E E  

Tc depends on ionic band gap. 

For pressure, let V=P
2
 (elastic energy is proportion to P

2
). Also   ~ P

3/2
 and 

0

g gE E P  .  (d/dP)=0 

condition for maximum conductivity is equivalent to  

1
2 3

1 2 2
1 2

1
0

2 2 B

A E
AP i P

P K T V

    
      

  

                                                                    (18) 

The real part gives, c BP K T   
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where  Eg to be real and not complex. When λ is large, Pc  is small and when λ is small, Pc is high. For complex band 

gap, the condition becomes a quadratic equation given by 

1

2
21

sin 0
2 2 2

i

B B

EE
P P

K T K T





  
    

  

                                                                     (19) 

Then 

1

21
4 sin

2 4 2 2

iB B
c

B B

EK T K T E
P

K T K T



  

 
             

                                                                                                          (20) 

Next for light  or EM waves. 

V   leads to cE V     or cE    for Eg to be real. 

For complex band gap, 

cot
2

i
c

B

EE

K T


 
  
 

                                                         (21) 

This is one type of electron-phonon resonance.  

For a particle in rectangular well [20].    
1/ 2 1/ 21/ 2

0 02 2 cot 2E V E V E mE L    
 

  

Now 
2 21 2E m L  or    1 2L E m  

Then Bk T   gives  0 cot 2 BE E E k T because for V0 = 0, and  
1/ 2

cot 2 /cE E mE L   after 

substituting L. This agrees with equation (21), when E=Ei/4. 

Infrared band gaps like E=Ei, E=Ei/2 and Ei = Ei/4 are occasionally found where Ei is ionic band gap. Ei = 0.225 eV 

is the Peierls gap. Band gaps at 0.1125 and 0.0056 eVs are also found, because of electron-hole pairs (0.1125 eV) 

and biexciton generations (0.056 eV). 

 

3.4 Transition temperature 

Now we expand E in 
1

2E
b i

V


 
  

 

. Using 

F

F

E

dE
E E n

dn

 
   

 

 which gives  

 
 

1

2

0
F

n
i k

D E V
A A e


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  
                                                                          (22) 

and taking 1k  . Then  
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   

   

1

2

022

1 1

2 22 2

g

B

E n
i

D VK T
ne e e

i

m E m V




 
  
  

 




                                                                   (23a) 

EF=0 (Fermi level is taken as zero). 

So that D(EF) = D(o). 

Now the effective electron-electron interaction V is negative so that V V   leading to  

 
 

   

1

2
2

0

1 1

2 2

exp exp
2 0

2 2

g

B

E n
n e

k T D V

m E m V




 

 
        

    
 
 
 
 

                                                                    (23b) 

Transition temperature through magnetic energy 

Let us take an inductive response of a superconductor. 

If L is the inductance depending on size, shape and geometry of the specimen, then magnetic energy is given by 

22 2 21 1

2 2
B cE LI A k T 

   
     
   

 

where  is the electric field. 

then 

 
 

  

1

2
2 22 2 21

exp exp
2 0

2 2

g

B

c

B

En
ne LA

D V k T
T

m E m V K

 

 

    
    

    



                                                                                      (24) 

when the magnetic energy is equal to the available thermal energy (kBTc) and Tc is the breaking temperature. In   

these case of photoconductivity [21] (1 )Q W R h     and nn Q   ,  where   is quantum efficiency, 

n
 is life time of charge carrier, W is watt of power incident, R is reflectivity and h is photon energy. 

Thus, 

 
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     



                                                                      (25) 

Thus as n , W and  increase, Tc increases. As  V, h and D(0) increase, Tc decreases. 

For n arising from pressure, 
0( )g gE P E P   for n=-λPD(0) 
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                                                                        (26) 

As P increases, Tc decreases as normally found in superconductors. 

For temperature change [21], 
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T E
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  
                                                                    (27) 

leads to    20n D T T      

where  is of the order of Debye temperature. 

Then 
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                                                                            (28) 

When  is small Tc is high. 

In the above equations, 
0

gE  is the band gap. 
0

gE  is positive for a semiconductor. 
0

gE  is Peierls gap for Peierls 

semiconductor. 
0

gE =0 for metals and two dimensional conductors at low temperatures, 
0

gE  is negative for 

semimetals and 
0

gE  is BCS gap for superconductors. Thus the above equations apply generally to conducting solids 

of all types. 

3.5 Power dissipation  and the breaking temperature 

For 0

bkke   function as observed in infrared spectra of some organic and metal-organic charge transfer 

complexes, the spectral function is  2 2

0A A b b    where  is deformation. Power dissipation is related with 

absorption as follows. Power P=I
2
R=

2
V

 
where E is electric field,  is conductivity and V


 is volume. 

B cP k T   also where   is a constant. 

Then  

1
0 2 24

n c b
A

b


 

 
  

 
                                                         (29) 

Substituting A0 and b given by equation15a and 15b, simplifying and using T=E-V, 
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


                               (30) 

and some equation as (30) 

For 
0

bA A e    the spectral function is  2 2

0A A b b k   exactly similar analysis using 13a and 13b leads 

to 

21
0 2 24

B c

n c b
k T A V

b k




 
   

 
                                                        (31) 

As m

-the effective mass is less, Tc is high. When kinetic energy (T) is less, Tc is high. This shows CDWs that move 

very slowly with very less kinetic energy and Frohlich  superconductor has Tc higher than BCS superconductors. 

 

3.6 Pressure and temperature dependence of resistivity or conductivity 

The pressure dependence of resistivity of  some inclusion compounds of iodine and benzidine-TCNQ are given by 

0( ) ( )exp( )P P bP   ; the spectral function is given by  

  2 2

01 A b b x    where x is deformation. 

2 2 2ne m v ne     taking k=1/. Then 

2 2
( )

ne
E T

C


  


                   (32) 

using (1/2)C 
2
 = E-T. Comparing constant and variable terms, A0 and b are found. 

Substitution back in formula for conductivity leads to  

1
2

22
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ne ET E
i i xP

c xP T
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

 
         
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 


                  (33) 

Power P

 is proportional to 

2
for inductive response 

221

2
B cLI k T    leads to  
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22 0

2

21 1
exp

2
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B B

E Pn e ET
T LA

k c k T W



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     

     


                           (34) 

The factor  

 
1/ 2

exp i E T W    
 where  W xP remains imaginary and cancels out while taking modulus . 

Next power dissipation P = I
2
R =E

2
 V

= 
 kBTc   and leads to  
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                                            (35) 

Note T is negative when effective mass is negative. 

Now exp( )A P b P    where P is momentum.  

0 0 /A A A    and /b b A    P is pressure,   is relaxation time and   /P dP dt A p A     where A
’
 is 

area under compression. Then 
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                                              (36) 

So that 
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If m
*
 is positive, the resistivity oscillates with x. If m

*
 is negative, resistivity exponentially falls to zero. 

The temperature dependence of the conductivity () is given by 0( ) bTT A Te  as found experimentally in 

cadmium oxalate,  2 2

0b S A b    this should be compared with 
22 ( )m E V ne     to determine A0 

and b. S is entropy. Exactly similar analysis as carried out in light-induced Peierls instability leads to  
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where U0 = ST is the internal energy. This leads to 
2

b cP K T I R     and  
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For 
2

b cP I R K T      
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Substitution of A0 and b, simplifying and using V=E-T gives 

22

1 1
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k m V m T V
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                   (42) 

For temperature dependence,  2 2

0A b b S    where S is entropy. The substitution of A0 and b leads to  the 

equation which is same as equation (30). 

3.7 Gaussian absorption and transition temperature 

The Gaussian absorption function [23] is given by  
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               (43b) 

where A0is maximum absorption,  is wave length, 0 is central value of  and M2 is the second moment of the 

Gaussian distribution (20). The Fourier transform of a Gaussian function is also a Gaussian function. A , k0 and 

2M   are the same Gaussian parameters as A0, 0 and M2. 

Now 
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and for Gaussian 

 
2

0

1 2

4
ln ln ln

2

k k

n c M






 
  

 




               (44b) 

Comparing constant and variable terms, 
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As m
*
 increases, 

22M  increases, i.e. the width of the Gaussian function increases as  the effective Frohlich mass 

increases. Also the amplitude decreases i.e. less pronounced Gaussian bands are better for Frohlich  super 

conduction. As an approximation 
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                               (46) 

Which is a Cauchy distribution. For  
2

2 02M k k  .This is a Cauchy distribution. Now since 
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by expanding 1/. 
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which in turns gives  
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Taking D(EF) = D(0), 
0 xp (0)e V D n     where the Fermi level (EF) is taken as zero. 

 1 04 exp (0)n c A V D n      and as V and D(0) increase,  decreases. 

Now  
22 21 2B cK T LA E  , where L is inductance, 

then  
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As V and D(0) decrease Tc increases. 

and kBTc = I
2
R=E

2
V


 leads to  
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                  (51) 

IV. CONCLUSION 

Seven polyiodide chains complexes shows A(λ)=A0 λ
-bλ

 relation in UV-visible  which shows Cauchy distribution in 

momentum.  A(k)=A0 ke
-bλ

 function is found in TTF-TCNQ and TMTSF-DDQ and two CT complexes of Ni (N-

CH3-Salim)2  which is associated with dynamic anomaly or light induced Kohn anomaly. Oscillations are related 

with optically detected charge density waves in other materials. It is possible to get an equation for transition 

temperature when the thermal energy compensates magnetic energy or power loss obtained in the Frohlich current. 
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