International Journal of Advance Research in Science and Engineering
Vol. No.5, Issue No. 04, April 2016

—_— IJARSE
www.ljarse.com

ISSN 2319 - 8354

DOCKER: FUTURE TO VIRTUALIZATION
Siddhi Choudhari!, Chetan Patil?

12 Computer Engineering Department, Lokmanya Tilak College of Engineering,
Mumbai University, India

ABSTRACT

Docker is an open platform for developers and sysadmins to build, ship, and run distributed applications.
Consisting of Docker Engine, a portable, light weight runtime and packaging tool, and Docker Hub, a cloud
service for sharing applications and automating workflows, Docker enables apps to be quickly assembled from
components and eliminates the friction between development, QA, and production environments. As a result, IT

can ship faster and run the same app, unchanged, on laptops, data center VMs, and any cloud.

Keywords: Container, Docker, Open Source, Virtual Machine

I. INTRODUCTION

In a normal virtualized environment, one or more virtual machines run on top of a physical machine using a
hypervisor like Xen, Hyper-V etc. Containers on the other hand run on user space on top of operating systems
kernel. It can be called as OS level virtualization. Each container will have its isolated user space and you can
run multiple containers on a host, each having its own user space. It means you can run different Linux systems
(containers) on a single host. For example, you can run a RHEL and SUSE container on an Ubuntu server. The
Ubuntu Server can be a virtual machine or a physical host. Containers are isolated in a host using the two Linux
kernel features called namespaces and control groups. Container is not a new concept. Google has been using
their own container technology in their Infrastructure for years. Solaris Zones, BSD jails, LXC are the few
Linux container technology that has been around for years. In a nutshell, containers are a method for isolation

and resource control, much like traditional virtualization, just without the hypervisor overhead. !
I1. CONTAINER BASED VIRTUALIZATION

Resource virtualization consists of using an intermediate software layer on top of an underlying system in order
to provide abstractions of multiple virtual resources. In general, the virtualized resources are called virtual
machines (VM) and can be seen as isolated execution contexts. There are a variety of virtualization techniques.
Today, one of the most popular is the hypervisor-based virtualization, which has Xen, VMware and KVM as its
main representatives. The hypervisor based virtualization, in its most common form (hosted virtualization),
consists of a virtual machine monitor (VMM) on top of a host OS that provides a full abstraction of VM. In this
case, each VM has its own operating system that executes completely isolated from the others. This allows, for
instance, the execution of multiple different operating systems on a single host. A lightweight alternative to the
hypervisors is the container-based virtualization, also known as Operating System Level virtualization.
Container — based virtualization is a virtualization method that uses a single kernel to run multiple instances on a

172 |Page

International Journal of Advance Research in Science and Engineering
Vol. No.5, Issue No. 04, April 2016

_ IJARSE
www.ljarse.com

ISSN 2319 - 8354

single operating system. This kind of virtualization partitions the physical machines resources, creating multiple
isolated user-space instances. As can be seem, while hypervisor-based virtualization provides abstraction for full
guest OS’s (one per virtual machine), container-based virtualization works at the operation system level,
providing abstractions directly for the guest processes. In practice, hypervisors work at the hardware abstraction

level and containers at the system call/ABI layer. @

2.1. Introduction To Container

Operating-system-level virtualization is a server virtualization method where the kernel of an operating system
allows for multiple isolated user space instances, instead of just one. Such instances (often called containers,
virtualization engines (VE), virtual private servers (VPS), or jails) may look and feel like a real server from the
point of view of its owners and users.

On Unix-like operating systems, this technology can be seen as an advanced implementation of the standard
cheroot mechanism. In addition to isolation mechanisms, the kernel often provides resource management
features to limit the impact of one container's activities on the other containers.

What does a container provide that a VM does not?

Simple deployment:

By packaging your application as a singularly addressable, registry-stored, one-command-line deployable
component, a container radically simplifies the deployment of your app no matter where you’re deploying it.
Rapid availability:

By abstracting just the OS rather than the whole physical computer, this package can “boot” in ~1/20th of a
second compared to a minute or so for a modern VM.

Leverage micro services:

Containers allow developers and operators to further subdivide compute resources. If a micro VM instance
seems like overkill for your app, or if scaling an entire VM at a time seems like a big step function, containers

will make a big, positive impact in your systems.

2.2. Advantages Of Container

An obvious advantage is that a developer has, in their system, plenty of compute power to run multiple
containers, making for easier and faster development. While it is certainly possible to run several virtual
machines on a system, it’s far from fast, easy, or lightweight. But if you’re running thousands of
programmatically driven tests per day, this starts to add up. With a container, you could do thousands of simple
tests at the same cost, amounting to large savings for your production applications.

Another implication is the composability of application systems using this model, especially with applications
using open source software. While it might be a daunting systems administration (not to mention pronunciation)
task for a developer to install and configure MySQL, memcached, MongoDB, Hadoop, GlusterFS, RabbitMQ,
node.js, nginx, etc. together on a single box to provide a platform for their application, it is much easier and
vastly lower risk to start a few containers housing these applications with some very compact scripting.

Consider the amount of error-prone, specialized, boilerplate work this model eliminates. Add to this the public

173 | Page

International Journal of Advance Research in Science and Engineering
Vol. No.5, Issue No. 04, April 2016

_ IJARSE
www.ljarse.com

ISSN 2319 - 8354

registration of canonical implementations for these types of core building blocks, and you have the beginnings

of a real ecosystem for quality components.

2.3. HOW CONTAINER SOLVES the PROBLEM OF VIRTUALIZATION?

Over the past couple of years, hypervisor-based virtualization has become a major trend in virtualization. It’s
not hard to understand why; it is flexible and allows you to install nearly nay operating system. If you don’t
need many different operating systems running simultaneously, container-based virtualization is a good
alternative and offers virtualization performance benefits. Consider an example where N goods are to be
transported in N transporting systems. A standard container is loaded with virtually any goods, and stays sealed
until it reaches final delivery. In between, it can be loaded and unloaded, stacked, transported efficiently over
long distances, and transferred from one mode of transport to another. Moreover, there are two basic conditions;
1) the transport should be quick and smooth, 2) Interaction of goods. For example, Coffee beans next to spices.
By using N*N matrix, with rows depicting goods and columns depicting vehicles, this problem can be solved.

Each good can be sealed in a container and transported by any vehicle.

2.4. Architecture of Container
A Container consists of an operating system, user-added files and meta—data. As we have seen each container is
built from an image. That image tells docker what the container holds, what process to run when the container

is launched and a variety of other configuration data.

Container 1 Container 2 Container 3

OS Virtualisation Layer

Standard Host OS

Hardware

Fig.1. Container Architecture

2.5. Disadvantages of Container

Containers are not a panacea, particularly for enterprises that have already invested in hypervisor-centric
technologies like SR-IOV, VT-D and Network Function Virtualization. In each case, the technology is designed
to connect a virtual machine guest directly to a hardware or fabric by means of a special driver sitting inside the
guest kernel. Since there's no separate guest kernel with containers, there's nothing to insert a driver into, and
therefore no apparent way to make use of the technology. However, analysis only shows the technology doesn't

work if one thinks in the hypervisor paradigm. Docker is a perfect solution to overcome these drawbacks.

174 |Page

International Journal of Advance Research in Science and Engineering
Vol. No.5, Issue No. 04, April 2016

_ IJARSE
www.ljarse.com

ISSN 2319 - 8354
I11. DOCKER

Brandon Butler at Network World has come up with one of the best definitions so far,

“Docker is both an open source project and the name of a startup that focuses on Linux Containers. Containers
are the idea of running multiple applications on a single host. It’s similar to compute virtualization, but instead
of virtualizing a server to create multiple operating systems, containers offer a more lightweight alternative by
essentially virtualizing the operating system, allowing multiple workloads to run on a single host.”

Docker is a popular open source project based on Linux containers. Docker is written in go and developed by
Dotcloud (A PaaS Company). Docker is basically a container engine which uses the Linux Kernel features like
namespaces and control groups to create containers on top of an operating system and automates application
deployment on the container. It provides and light weight environment to run your application code. Docker has
an efficient workflow for moving you application from developer’s laptop, test environment to production.
Docker is incredibly fast and it can run on host with compatible Linux Kernel.

Docker, a new container technology, is hotter than hot because it makes it possible to get far more apps running
on the same old servers and it also makes it very easy to package and ship programs. Docker is an open platform
for developers and sysadmins to build, ship, and run distributed applications. Consisting of Docker Engine, a
portable, lightweight runtime and packaging tool, and Docker Hub, a cloud service for sharing applications and
automating workflows, Docker enables apps to be quickly assembled from components and eliminates the
friction between development, QA, and production environments. As a result, IT can ship faster and run the

same app, unchanged, on laptops, data center VMs, and any cloud. 1!

3.1. How Docker Solves The Problem?

Virtual Machines:

Each virtualized application includes not only the application - which may be only 10s of MB - and the
necessary binaries and libraries, but also an entire guest operating system - which may weigh 10s of GB.
Docker:

The Docker Engine container comprises just the application and its dependencies. It runs as an isolated process
in user space on the host operating system, sharing the kernel with other containers. Thus, it enjoys the resource
isolation and allocation benefits of VMs but is much more portable and efficient.

For Developers:

With Docker, developers can build any app in any language using any tool chain. “Dockerized” apps are
completely portable and can run anywhere - colleagues’ OS X and Windows laptops, QA servers running
Ubuntu in the cloud, and production data center VMs running Red Hat. Developers can get going quickly by
starting with one of the 13,000+ apps available on Docker Hub. Docker manages and tracks changes and
dependencies, making it easier for sysadmins to understand how the apps that developers build work. And with
Docker Hub, developers can automate their build pipeline and share artefacts with collaborators through public
or private repositories. Docker helps developers build and ship higher-quality applications, faster.

For Sysadmins:

175 | Page

International Journal of Advance Research in Science and Engineering
Vol. No.5, Issue No. 04, April 2016

_ IJARSE
www.ljarse.com

ISSN 2319 - 8354

Sysadmins use Docker to provide standardized environments for their development, QA, and production teams,
reducing “works on my machine” finger-pointing. By “Dockerizing” the app platform and its dependencies,
sysadmins abstract away differences in OS distributions and underlying infrastructure. In addition, standardizing
on the Docker Engine as the unit of deployment gives sysadmins flexibility in where workloads run. Whether
on-premise bare metal or data center VMs or public clouds, workload deployment is less constrained by
infrastructure technology and is instead driven by business priorities and policies. Furthermore, the Docker
Engine’s lightweight runtime enables rapid scale-up and scale-down in response to changes in demand. Docker

helps sysadmins deploy and run any app on any infrastructure, quickly and reliable '

3.2. Docker Comparison

On the other hand Docker containers are executed with the Docker engine rather than the hypervisor. Containers
are therefore smaller than Virtual Machines and enable faster start up with better performance, less isolation and
greater compatibility possible due to sharing of the host’s kernel.

Tablel. Docker Comparison

VIRTUAL | CONTAINER | DOCKER
MACHINE
Lightweight No Yes Yes
Needs Guest Os In The Yes Yes No
Application
Needs Hypervisor In Yes No No
The Application
Strong Resource Yes No Yes
Management
Portable No Yes Yes
Need Less Memory No No Yes
And Time

Docker Containers have much more potential than Virtual Machines. It’s evident as Docker Containers are able
to share a single kernel and share application libraries. Containers present a lower system overhead than Virtual
Machines and performance of the application inside a container is generally same or better as compared to the
same application running within a Virtual Machine.®

3.3. Docker Architecture
Docker Components: Docker is composed of following four components.
e Docker Client and Daemon
Docker has client-server architecture. Docker Daemon or server is responsible for all the actions that are related

to containers. The daemon receives the commands from the Docker client though client or REST APT’s.

176 |Page

International Journal of Advance Research in Science and Engineering
Vol. No.5, Issue No. 04, April 2016

www.ijarse.com JARSE
1) * ISSN 2319 - 8354
DOCKER | z|(|z|(8]| +8: \:‘:«, DOCKER
CLIENT § [E § : E : - | REGISTRY }
(] o o
&} o o ‘ _____________
S P (I [y (P
‘ DOCKER DAEMON ‘
‘ HOST 0S ‘
DOCKER HOST
Fig.2. Docker Architecture
o Images

Images are the basic building blocks of Docker. Containers are built from images. Images can be configured
with applications and used as a template for creating containers. Images are organized in a layered manner.
Every change in an image is added as layer on top of it.

o Docker Registry

Docker registry is a repository for Docker images. Using Docker registry, you can build and share images with
your team. A registry can be public or private. Docker Inc provides a hosted registry service called Docker Hub.
It allows you to upload and download images from a central location. Docker hub acts like git, where you can
build your images locally in your laptop, commit it and then can be pushed to the Docker hub.

e Containers

Container is the execution environment for Docker. Containers are created from images. It is a writable layer of
the image. You can package your applications in a container, commit it and make it a golden image to build
more containers from it. Containers can be started, stopped, committed and terminated. If you terminate a

container without committing it, all the changes made to the container will be lost.

IV. CONCLUSION & FUTURE WORK

The best feature of Docker is collaboration. Docker images can be pushed to a repository and can be pulled
down to any other host to run containers from that image. Moreover Docker hub has thousands of images
created by users and you can pull those images down to your hosts based on your application requirements.
Naturally, Docker is a Technology of the year shoo-in not only for the agility it brings to developers, but for
how far the project has come in the course of the past year. Docker’s entire networking model has been
upgraded .Its handling of storage has been reworked to such degree that it is now forming the basis for a cottage
industry of third-party products. It has finally done away with the need to run containers as root. And it has
gained a smorgasbord of additional tooling.

Also striking is the way Docker has influenced the direction and development of not only other software
projects , but entire software industries VMware sensed, correctly, that containers were providing a better
solution to many problems VMs were originally meant to solve , and reworked much of its product line to

welcome containers as first-class citizens.

177 |Page

International Journal of Advance Research in Science and Engineering
Vol. No.5, Issue No. 04, April 2016

_ IJARSE
www.ljarse.com

ISSN 2319 - 8354

Google, Amazon, Red Hat, IBM, and Cisco- every data centre and cloud vendor is catching Docker fever. It has
been long time since any one piece of software came along that had such a transformative effect, and it will be
nothing short of fascinating to watch how Docker and its partners continue to shepherd its evolution through the

coming year.
V. ACKNOWLEDGMENT

As an author, 1 am using this opportunity to express my gratitude to Prof. Jayendra Jadhav who guided us to
work in this area. | also want to thank Prof. Pravin Nikumbh, Head of Computer Engineering Department,
Lokmanya Tilak College of Engineering, Navi Mumbai, for giving space to work. Last but not the least, | want
to thank our parents and friends for motivational support, aspiring guidance, invaluably constructive criticism

and friendly advice at each and every stage.
REFERENCES

[1] http://events.linuxfoundation.org/sites/events/files/ slides / Icnal3_petazzoni.pdf

[2] Search Server Virtualization, Retrieved on 21st-January-2015,
fromhttp://searchservervirtualization.techtarget.com/definition/container-based-virtualization-operating-
system-level-virtualization

[3] Understanding Docker -~ Docker Documentation, Retrieved on 24th-January-2015,
fromhttps://docs.docker.com/introduction/understanding-docker/

[4] System Administration Screen casts, Retrieved on 20™-January-2015,
fromhttps://sysadmincasts.com/episodes/31-introduction-to-docker

[5] The New Stack, Retrieved on 24™-January-2015, fromhttp://thenewstack.io/a-great-introduction-to-docker-
and-where-its-all-going/

[6] Red hat developer, Retrieved on 25™M-January-2015, from
http://developerblog.redhat.com/2014/05/15/practical-introduction-to-docker-containers/

[7] http://www.devopscube.com/wp-content/uploads/2014/12/docker-architecture-techtip39.png

[8] DevOps.com, Retrieved on 27"-January-2015, from http://devops.com/blogs/devops-toolbox/docker-vs-
vms/

[9]. Dilip G. Durbude, B. B. Jadia, R. S. Sontakke. "LONG TERM HYDROLOGICAL SIMULATION
MODELLING BASED ON PHYSICAL CHARACTERISTICS OF WATERSHE." International Journal
of Advanced Technology in Engineering and Science 3.Special Issue No. 01 (2015): 28-41.

178 | Page

