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ABSTRACT  

Docker is an open platform for developers and sysadmins to build, ship, and run distributed applications. 

Consisting of Docker Engine, a portable, light weight runtime and packaging tool, and Docker Hub, a cloud 

service for sharing applications and automating workflows, Docker enables apps to be quickly assembled from 

components and eliminates the friction between development, QA, and production environments. As a result, IT 

can ship faster and run the same app, unchanged, on laptops, data center VMs, and any cloud.  
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I. INTRODUCTION 

 

In a normal virtualized environment, one or more virtual machines run on top of a physical machine using a 

hypervisor like Xen, Hyper-V etc. Containers on the other hand run on user space on top of operating systems 

kernel. It can be called as OS level virtualization. Each container will have its isolated user space and you can 

run multiple containers on a host, each having its own user space. It means you can run different Linux systems 

(containers) on a single host. For example, you can run a RHEL and SUSE container on an Ubuntu server. The 

Ubuntu Server can be a virtual machine or a physical host. Containers are isolated in a host using the two Linux 

kernel features called namespaces and control groups. Container is not a new concept. Google has been using 

their own container technology in their Infrastructure for years. Solaris Zones, BSD jails, LXC are the few 

Linux container technology that has been around for years.
 
In a nutshell, containers are a method for isolation 

and resource control, much like traditional virtualization, just without the hypervisor overhead.
 [1] 

 

II. CONTAINER BASED VIRTUALIZATION 

 

Resource virtualization consists of using an intermediate software layer on top of an underlying system in order 

to provide abstractions of multiple virtual resources. In general, the virtualized resources are called virtual 

machines (VM) and can be seen as isolated execution contexts. There are a variety of virtualization techniques. 

Today, one of the most popular is the hypervisor-based virtualization, which has Xen, VMware and KVM as its 

main representatives. The hypervisor based virtualization, in its most common form (hosted virtualization), 

consists of a virtual machine monitor (VMM) on top of a host OS that provides a full abstraction of VM. In this 

case, each VM has its own operating system that executes completely isolated from the others. This allows, for 

instance, the execution of multiple different operating systems on a single host. A lightweight alternative to the 

hypervisors is the container-based virtualization, also known as Operating System Level virtualization.  

Container – based virtualization is a virtualization method that uses a single kernel to run multiple instances on a 
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single operating system. This kind of virtualization partitions the physical machines resources, creating multiple 

isolated user-space instances. As can be seem, while hypervisor-based virtualization provides abstraction for full 

guest OS’s (one per virtual machine), container-based virtualization works at the operation system level, 

providing abstractions directly for the guest processes. In practice, hypervisors work at the hardware abstraction 

level and containers at the system call/ABI layer. 
[2] 

 

2.1. Introduction To Container 

Operating-system-level virtualization is a server virtualization method where the kernel of an operating system 

allows for multiple isolated user space instances, instead of just one. Such instances (often called containers, 

virtualization engines (VE), virtual private servers (VPS), or jails) may look and feel like a real server from the 

point of view of its owners and users.  

On Unix-like operating systems, this technology can be seen as an advanced implementation of the standard 

cheroot mechanism. In addition to isolation mechanisms, the kernel often provides resource management 

features to limit the impact of one container's activities on the other containers. 

What does a container provide that a VM does not? 

Simple deployment:  

By packaging your application as a singularly addressable, registry-stored, one-command-line deployable 

component, a container radically simplifies the deployment of your app no matter where you’re deploying it. 

Rapid availability:  

By abstracting just the OS rather than the whole physical computer, this package can “boot” in ~1/20th of a 

second compared to a minute or so for a modern VM. 

Leverage micro services:  

Containers allow developers and operators to further subdivide compute resources. If a micro VM instance 

seems like overkill for your app, or if scaling an entire VM at a time seems like a big step function, containers 

will make a big, positive impact in your systems. 

 

2.2. Advantages Of Container 

An obvious advantage is that a developer has, in their system, plenty of compute power to run multiple 

containers, making for easier and faster development. While it is certainly possible to run several virtual 

machines on a system, it’s far from fast, easy, or lightweight. But if you’re running thousands of 

programmatically driven tests per day, this starts to add up. With a container, you could do thousands of simple 

tests at the same cost, amounting to large savings for your production applications. 

Another implication is the composability of application systems using this model, especially with applications 

using open source software. While it might be a daunting systems administration (not to mention pronunciation) 

task for a developer to install and configure MySQL, memcached, MongoDB, Hadoop, GlusterFS, RabbitMQ, 

node.js, nginx, etc. together on a single box to provide a platform for their application, it is much easier and 

vastly lower risk to start a few containers housing these applications with some very compact scripting. 

Consider the amount of error-prone, specialized, boilerplate work this model eliminates. Add to this the public 
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registration of canonical implementations for these types of core building blocks, and you have the beginnings 

of a real ecosystem for quality components. 

 

2.3. HOW CONTAINER SOLVES the PROBLEM OF VIRTUALIZATION? 

Over the past couple of years, hypervisor-based virtualization has become a major trend in virtualization. It’s 

not hard to understand why; it is flexible and allows you to install nearly nay operating system. If you don’t 

need many different operating systems running simultaneously, container-based virtualization is a good 

alternative and offers virtualization  performance benefits. Consider an example where N goods are to be 

transported in N transporting systems. A standard container is loaded with virtually any goods, and stays sealed 

until it reaches final delivery. In between, it can be loaded and unloaded, stacked, transported efficiently over 

long distances, and transferred from one mode of transport to another. Moreover, there are two basic conditions; 

1) the transport should be quick and smooth, 2) Interaction of goods. For example, Coffee beans next to spices. 

By using N*N matrix, with rows depicting goods and columns depicting vehicles, this problem can be solved. 

Each good can be sealed in a container and transported by any vehicle.  

 

2.4. Architecture of Container 

A Container consists of an operating system, user-added files and meta–data. As we have seen each container is 

built from an image. That image tells docker what the container holds, what process to run when  the container 

is launched and a variety of other configuration data. 

 

 

Fig.1. Container Architecture 

 

2.5. Disadvantages of Container   

Containers are not a panacea, particularly for enterprises that have already invested in hypervisor-centric 

technologies like SR-IOV, VT-D and Network Function Virtualization. In each case, the technology is designed 

to connect a virtual machine guest directly to a hardware or fabric by means of a special driver sitting inside the 

guest kernel. Since there's no separate guest kernel with containers, there's nothing to insert a driver into, and 

therefore no apparent way to make use of the technology. However, analysis only shows the technology doesn't 

work if one thinks in the hypervisor paradigm. Docker is a perfect solution to overcome these drawbacks. 
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III. DOCKER 

 

Brandon Butler at Network World has come up with one of the best definitions so far, 

“Docker is both an open source project and the name of a startup that focuses on Linux Containers. Containers 

are the idea of running multiple applications on a single host. It’s similar to compute virtualization, but instead 

of virtualizing a server to create multiple operating systems, containers offer a more lightweight alternative by 

essentially virtualizing the operating system, allowing multiple workloads to run on a single host.” 

Docker is a popular open source project based on Linux containers. Docker is written in go and developed by 

Dotcloud (A PaaS Company). Docker is basically a container engine which uses the Linux Kernel features like 

namespaces and control groups to create containers on top of an operating system and automates application 

deployment on the container. It provides and light weight environment to run your application code. Docker has 

an efficient workflow for moving you application from developer’s laptop, test environment to production. 

Docker is incredibly fast and it can run on host with compatible Linux Kernel. 

Docker, a new container technology, is hotter than hot because it makes it possible to get far more apps running 

on the same old servers and it also makes it very easy to package and ship programs. Docker is an open platform 

for developers and sysadmins to build, ship, and run distributed applications. Consisting of Docker Engine, a 

portable, lightweight runtime and packaging tool, and Docker Hub, a cloud service for sharing applications and 

automating workflows, Docker enables apps to be quickly assembled from components and eliminates the 

friction between development, QA, and production environments. As a result, IT can ship faster and run the 

same app, unchanged, on laptops, data center VMs, and any cloud. 
[2]

  

 

3.1. How Docker Solves The Problem?  

Virtual Machines: 

Each virtualized application includes not only the application - which may be only 10s of MB - and the 

necessary binaries and libraries, but also an entire guest operating system - which may weigh 10s of GB. 

Docker: 

The Docker Engine container comprises just the application and its dependencies. It runs as an isolated process 

in user space on the host operating system, sharing the kernel with other containers. Thus, it enjoys the resource 

isolation and allocation benefits of VMs but is much more portable and efficient. 

For Developers: 

With Docker, developers can build any app in any language using any tool chain. “Dockerized” apps are 

completely portable and can run anywhere - colleagues’ OS X and Windows laptops, QA servers running 

Ubuntu in the cloud, and production data center VMs running Red Hat. Developers can get going quickly by 

starting with one of the 13,000+ apps available on Docker Hub. Docker manages and tracks changes and 

dependencies, making it easier for sysadmins to understand how the apps that developers build work. And with 

Docker Hub, developers can automate their build pipeline and share artefacts with collaborators through public 

or private repositories. Docker helps developers build and ship higher-quality applications, faster. 

For Sysadmins: 
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Sysadmins use Docker to provide standardized environments for their development, QA, and production teams, 

reducing “works on my machine” finger-pointing. By “Dockerizing” the app platform and its dependencies, 

sysadmins abstract away differences in OS distributions and underlying infrastructure. In addition, standardizing 

on the Docker Engine as the unit of deployment gives sysadmins flexibility in where workloads run. Whether 

on-premise bare metal or data center VMs or public clouds, workload deployment is less constrained by 

infrastructure technology and is instead driven by business priorities and policies. Furthermore, the Docker 

Engine’s lightweight runtime enables rapid scale-up and scale-down in response to changes in demand.  Docker 

helps sysadmins deploy and run any app on any infrastructure, quickly and reliable 
[1] 

 

3.2. Docker Comparison 

On the other hand Docker containers are executed with the Docker engine rather than the hypervisor. Containers 

are therefore smaller than Virtual Machines and enable faster start up with better performance, less isolation and 

greater compatibility possible due to sharing of the host’s kernel. 

Table1. Docker Comparison 

 VIRTUAL 

MACHINE 

CONTAINER DOCKER 

Lightweight No Yes Yes 

Needs Guest Os In The 

Application 

Yes Yes No 

Needs Hypervisor In 

The Application 

Yes No No 

Strong Resource 

Management 

Yes No Yes 

Portable No Yes Yes 

Need Less Memory 

And Time 

No No Yes 

 

Docker Containers have much more potential than Virtual Machines. It’s evident as Docker Containers are able 

to share a single kernel and share application libraries. Containers present a lower system overhead than Virtual 

Machines and performance of the application inside a container is generally same or better as compared to the 

same application running within a Virtual Machine.
[8] 

 

3.3. Docker Architecture 

Docker Components: Docker is composed of following four components.  

 Docker Client and Daemon 

Docker has client-server architecture. Docker Daemon or server is responsible for all the actions that are related 

to containers. The daemon receives the commands from the Docker client though client or REST API’s.  
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                                                          Fig.2. Docker Architecture 

 Images 

Images are the basic building blocks of Docker. Containers are built from images. Images can be configured 

with applications and used as a template for creating containers. Images are organized in a layered manner. 

Every change in an image is added as layer on top of it. 

 Docker Registry 

Docker registry is a repository for Docker images. Using Docker registry, you can build and share images with 

your team. A registry can be public or private. Docker Inc provides a hosted registry service called Docker Hub. 

It allows you to upload and download images from a central location. Docker hub acts like git, where you can 

build your images locally in your laptop, commit it and then can be pushed to the Docker hub. 

 Containers 

Container is the execution environment for Docker. Containers are created from images. It is a writable layer of 

the image. You can package your applications in a container, commit it and make it a golden image to build 

more containers from it. Containers can be started, stopped, committed and terminated. If you terminate a 

container without committing it, all the changes made to the container will be lost. 

IV. CONCLUSION & FUTURE WORK 

 

The best feature of Docker is collaboration. Docker images can be pushed to a repository and can be pulled 

down to any other host to run containers from that image. Moreover Docker hub has thousands of images 

created by users and you can pull those images down to your hosts based on your application requirements.  

Naturally, Docker is a Technology of the year shoo-in not only for the agility it brings to developers, but for 

how far the project has come in the course of the past year. Docker’s entire networking model has been 

upgraded .Its handling of storage has been reworked to such degree that it is now forming the basis for a cottage 

industry of third-party products. It has finally done away with the need to run containers as root. And it has 

gained a smorgasbord of additional tooling. 

Also striking is the way Docker has influenced the direction and development of not only other software 

projects , but entire software industries VMware sensed, correctly, that containers were providing a better 

solution to many problems VMs were originally meant to solve , and reworked much of its product line to 

welcome containers as first-class citizens.  
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Google, Amazon, Red Hat, IBM, and Cisco- every data centre and cloud vendor is catching Docker fever. It has 

been long time since any one piece of software came along that had such a transformative effect, and it will be 

nothing short of fascinating to watch how Docker and its  partners continue to shepherd its evolution through the 

coming year.  
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