Vol. No.5, Special Issue No. (02), March 2016 www.ijarse.com

A COMPARATIVE STUDY ON VARIOUS BUILDING BLOCKS AS AN ALTERNATIVE TO CONVENTIONAL BRICKS

K.Mahendran¹, T.Sivaram², Dr.M.Shahulhameed³, R.Logaraja⁴

¹Assistant Professor, Department of Civil Engineering, P.S.R Engineering College, Sivakasi ²Final Year Student, Department of Civil Engineering, Sethu Institute of Technology, Madurai ³Professor,(Dean-Research), ⁴Student of Structural Engineering, Department of Civil Engineering, P.S.R Engineering College, Sivakasi

ABSTRACT

The comparison has to be made between Chamber Clay bricks, Fly ash bricks, AAC blocks, CLC blocks and Poro therm blocks based on their engineering properties and economic aspects. The major tests that to be carried out to determine the engineering properties are:

- 1.Bulk density
- 2. Direct Compressive strength test
- 3. Water absorption test
- 4. Thermal conductivity test

The above tests were carried out to check how far the products are conforming to Indian Standards.

Based on the obtained results, Cost Benefit Analysis is made for each building blocks and these values are discussed to know their economic benefits.

Keywords: Chamber Clay bricks, Fly ash bricks, AAC blocks, CLC blocks, Major Tests, Indian Standarads, Analysis

I. INTRODUCTION

Clay brickwork is made from selected clays moulded or cut into shape and fired in ovens. The firing transforms the clay into a building component with high compressive strength and excellent weathering qualities, attributes that have been exploited for millennia. Clay brickwork is India's most widely used external wall cladding.

Clay bricks are affordable, readily available, mass-produced, thoroughly tested modular building components. Their most desirable acoustic and thermal properties derive from their relatively high mass. They require little or no maintenance and possess high durability and load bearing capacity.

Concrete bricks are the same size and intended for the same uses as clay bricks. They share many of the same attributes of clay bricks but may require more control joints, may stain more easily and their colour may be subject to fading over time. They are more porous than clay bricks and must be sealed to prevent water penetration.

Vol. No.5, Special Issue No. (02), March 2016

www.ijarse.com

IJARSE ISSN 2319 - 8354

The use of clay and concrete brickwork is informed by extensive Indian research, manufacturing and construction experience.

There are various building blocks which are recently emerged in our construction Industry. In practice the better choice of adaptation of suitable wall units is made by comparison on their engineering properties.

The AAC blocks, Chamber clay bricks, Fly ash bricks, Porotherm blocks and CLC blocks are different building blocks which are really competitive in today's construction field

II.TESTING PROGRAM

2.1 Compressive Strength Test

The test was conducted based on the procedure described in Indian Codal provisions IS 3495(part 1): 1992 TEST RESULTS

A.Chamber clay Bricks

Brick no	Size (cm) L x B	Weight (Kg)	Compression Load (KN)
1	23 x 10	3.370	175
2	23 x 10	3.467	166.7
3	23 x 10	3.434	205.7

The Compression strength of Chamber clay bricks = 7.933 N/mm2

B.Fly-Ash Bricks

Compression Size (cm) Weight Brick no Load L x B (Kg) (KN) 3.444 22.9 x 10.6 251.2 1 3.445 2 22.9 x 10.5 253.6 3 22.9 x 10.6 3.276 190.5

The Compression strength of

Fly-Ash bricks = 9.604 N/mm^2

C.Porotherm Blocks

Brick no	Size (cm) L x B	Weight (Kg)	Compression Load (KN)
1	22.9 x 10.6	3.444	251.2
2	22.9 x 10.5	3.445	253.6
3	22.9 x 10.6	3.276	190.5

Vol. No.5, Special Issue No. (02), March 2016

www.ijarse.com

IJARSE ISSN 2319 - 8354

The Compression strength of

Porotherm blocks = 1.4579 N/mm^2

D.AAC Blocks

Brick no	Size (cm) L x B	Weight (Kg)	Compression Load (KN)
1	15 x 15	1.995	83.2
2	15 x 15	2.047	83
3	15 x 15	1.986	61.2
4	15 x15	2.035	68.8

The Compression strength of

 $AAC\ blocks = 3.291\ N/mm^2$

E.CLC Blocks

Brick no	Size (cm) L x B	Weight (Kg)	Compression Load (KN)
1	15 x 15	3.442	69.3
2	15 x 15	3.274	63.1
3	15 x 15	3.278	48.5
4	15 x 15	3.290	43.7

The Compression strength of

 $CLC\ blocks = 2.495\ N/mm^2$

2.2 Water Absorption Test

Water absorption

A standard soaking-in-water test can determine the porosity of bricks and blocks, which can then be used as an indication of the potential for the development of problems related to the penetration of salts and other materials into the units, such as salt attack and efflorescence.

Initial rate of absorption

As soon as the bricklayer puts the mortar on a brick, the brick starts to absorb water out of the mortar. The microscopic pores in the brick soak up the water, which carries with it some of the partly-dissolved cement and lime. It's the setting of this cementious material within the brick pores that provides most of the bond between the brick and the mortar, and thus gives the wall its strength.

TEST RESULTS

A.Chamber Clay Brick

Vol. No.5, Special Issue No. (02), March 2016

www.ijarse.com

IJARSE ISSN 2319 - 8354

Brick no	Dry oven weight (M1) [kg]	Wet weight (M2) [kg]
1	3.136	3.462
2	3.140	3.468
3	3.080	3.412

 $Average\ water\ absorption = 10.54\%$

B.Fly-Ash Brick

Brick no	Dry oven weight (M1) [kg]	Wet weight (M2) [kg]
1	3.150	3.580
2	3.239	3.637
3	2.893	3.316

Average water absorption = 13.52%

C.Porotherm Blocks

Brick no	Dry oven weight (M1) [kg]	Wet weight (M2) [kg]
1	3.150	3.580
2	3.239	3.637

Average water absorption = 14%

D.AAC Blocks

Block no	Dry oven weight (M1) [kg]	Wet weight (M2) [kg]
1	0.558	0.890
2	0.575	0.909
3	0.555	0.896

 $Average\ water\ absorption = 59.675\%$

Vol. No.5, Special Issue No. (02), March 2016 www.ijarse.com

IJARSE ISSN 2319 - 8354

E.CLC Blocks

		Wet
Dia i	Dry oven weight (M1)	weight
Block no	[kg]	(M2)
		[kg]
1	1.020	1.110
2	1.057	1.137
3	1.045	1.125
4	1.017	1.127

Average water absorption = 8.72%

2.3 Density Test

Three blocks shall be dried to constant mass in a suitable oven heated to approximately 100°C. After cooling the blocks to room temperature, the dimensions of each block shall be measured in centimetres to the nearest millimetre and the overall volume computed in cubic centimetres. The blocks shall then be weighted in kilograms to the nearest 10 gm. The density of each block calculated as follows:

Density in $kg/m^3 = Mass$ of block in kg/Mass of block in $cm^2 * 10^6$

TEST RESULTS

A.Chamber clay Bricks

Brick no	Size (cm)	Dry Oven	Density
DIICK IIO	LxBxD	Weight(Kg)	(Kg/m^3)
1	200 x 100 x	0.558	558
1	50	0.550	336
2	200 x 100 x	0.575	575
2	50	0.575	313
3	200 x 100 x	0.555	555
3	50	0.555	333

The dry density of chamber clay bricks = 1885.6 Kg/m^3

Vol. No.5, Special Issue No. (02), March 2016 www.ijarse.com

B.Fly-Ash Bricks

Brick no	Size (cm)	Dry Oven	Density
DIICK IIO	LxBxD	Weight(Kg)	(Kg/m^3)
1	10.7 x 10 x	1.108	1882.753
1	5.5	1.100	1002.733
2.	11 x 10.5 x	1.192	1779.370
2	5.8	1.172	1777.370
3	10.8 x 10.5	1.154	1754.546
	x 5.8	1.13	1751.510

The dry density Fly-Ash bricks = 1805.56 Kg/m^3

C.Porotherm Blocks

Brick no	Size (cm)	Dry Oven	Density
Brick no	LxBxD	Weight(Kg)	(Kg/m^3)
1	39.5 x 20 x	8.899	741.089
	15.2	0.077	741.007
2.	39.5 x 20 x	8.906	741.672
2	15.2	8.900	741.072
3	39.5 x 20 x	8.912	742,172
3	15.2	0.912	142.172

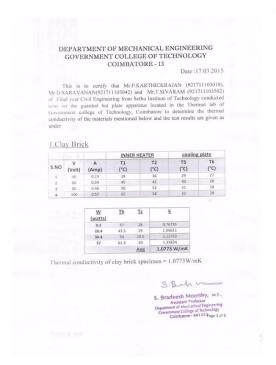
The dry density of Porotherm blocks= 741.674 Kg/m³

D.AAC Blocks

D.:: -1	Size (cm)	Dry Oven	Density
Brick no	LxBxD	Weight(Kg)	(Kg/m^3)
1	10.2 x 6.1 x	0.697	1867.031
2	10 x 6.5 x 6.7	0.795	1825.488
3	10.2 x 5.8 x 5.8	0.674	1964.287

The dry density of AAC blocks = 562.67 Kg/m^3

Vol. No.5, Special Issue No. (02), March 2016 www.ijarse.com

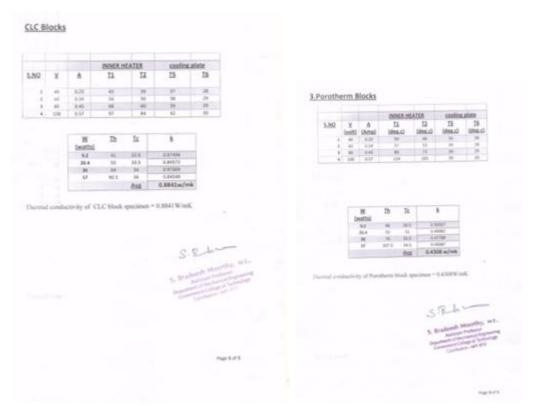

E.CLC Blocks

Brick no	Size (cm)	Dry Oven	Density
Drick no	LxBxD	Weight(Kg)	(Kg/m^3)
1	204 x 103 x 53	1.072	962.612
2	204 x 103 x 54	1.101	970.345
3	203 x 101 x 53	1.077	991.111
4	203 x 102 x 53	1.059	964.992

The dry density of CLC blocks = 972.265 Kg/m^3

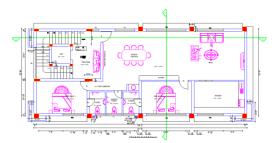
2.4 .Thermal Conductivity Test

RESULTS:



Vol. No.5, Special Issue No. (02), March 2016

www.ijarse.com

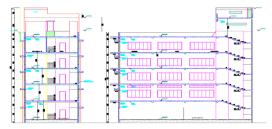


III. COST BENEFIT ANALYSIS

A. Brick work estimation:

The brick work estimation is made for an apartment building to obtain the costs that are to be spend in the building blocks. The plan and sectional-elevation of the building is shown in the fig.

Sectional plan of the Apartment building


The walls in the building are divided in to two types:

- ☐ M-Type walls (230mm thick walls)
- \square P-Type walls (115mm thick walls

Vol. No.5, Special Issue No. (02), March 2016

www.ijarse.com

Brickwork quantity for individual floors is shown in the table:

	Floor height	M-type wall	P-type wall	
	[m]	(230mm wall)	(115mm wall)	
		$[m^3]$	$[m^3]$	
1 st floor	3.81	74.87	8.49	
2 nd floor	3.505	68.88	7.82	
3 rd floor	3.505	68.88	7.82	
4 th floor	3.505	68.88	7.82	
	Total	281.5 m ³	31.95 m ³	

Total quantity of brick work = 313.45 m^3

B.Cost of blocks in the brickwork of the building

Blocks	Cost(□)
Clay brick	8, 38,779
Fly-ash brick	6, 82,574
Porotherm brick	11, 96,483
AAC	14, 45,006
CLC	10, 84,804

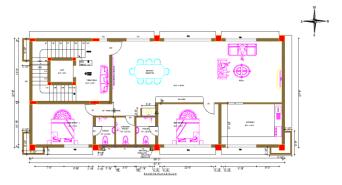
C.Percentage increase or decrease in Cost difference between Clay bricks and other blocks

BLOCK TYPE	Percentage	REMARK	
	difference in		
	cost (%)		
Fly-ash brick	18.62	Reduction in cost	
Porotherm brick	42.65	Increase in cost	
AAC	72.26	Increase in cost	
CLC	29.33	Increase in cost	

IV. LOAD EFFICIENCY ANALYSIS

A. Assumptions

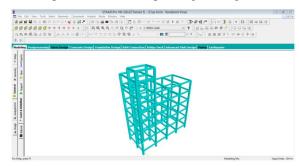
The Buildings have the following criteria:


a) Building is 5 storeys(G+4) high and has floor area 20 m x 8.5 m.

Vol. No.5, Special Issue No. (02), March 2016

www.ijarse.com

- b) Building is a framed Concrete structure.
- c) Building is residential and has the layout as shown:



On comparing the loadings of each building blocks with clay brick loading, Weight reduction percentage in Partition wall are given below:

Blocks	Weight reduction percentage
Fly-Ash brick	3.2 %
Porotherm block	45.6%
AAC block	52.7%
CLC block	36.4%

V. CONCRETE QUANTITY TAKE OFF OF THE BUILDING

The frames of the building is modeled and analyzed individually for each blocks using Staad.pro V8i. The structural members of the frame are optimized for corresponding loadings influenced by the blocks.

BLOCK	Concrete quantity take off (m3)
Clay brick	216.97
Fly-ash brick	206.85
Porotherm block	160.72
AAC block	152.14
CLC block	172.1

Note: Concrete Quantity Represents Volume Of Concrete In Beams, Columns And Footings Designed Above.

Cost Benefit Analysis for Concreting

Vol. No.5, Special Issue No. (02), March 2016 www.ijarse.com

IJARSE ISSN 2319 - 8354

Assumptions

- M25 grade concrete
- Mix ratio= 1 : 1 : 2
- Sand 1 unit (100 cu.ft) = $23250 \rightarrow 1$ cu.ft = 32.5
- Cement 1 bag (50kg) = 2 370
- Course aggregate [20mm-size] 1 unit (100 cu.ft) = \mathbb{Z} 2800 \rightarrow 1 cu.ft = \mathbb{Z} 28

Cost incurred in total Concrete take off for individual bocks

	Concrete quantity	Cost incurred
	take off (m3)	(□)
Clay brick	216.97	11,73,564
Fly-ash	206.85	11,18,852
brick		
Porotherm	160.72	8,69,340
block		
AAC block	152.14	8,22,945
CLC block	172.1	9,30,997

Percentage reduction in Concrete take off costs of individual blocks with the Clay brick:

	Cost difference	Percentage
	(?)	reduction (%)
Fly-ash	54,712	4.66
brick		
Porotherm	3,04,224	25.92
block		
AAC block	3,50,638	29.88
CLC block	2,42,567	20.67

VI.THERMAL EFFICIENCY

A. Thermal Conductivity

Blocks	Thermal Conductivity k		
	(W/m.k)	(Btu.in/h.ft ² .°F)	
Clay brick	0.72	$0.416^{(1)}$	
Fly-ash	0.66	0.381	
Porotherm	0.30	0.175	
AAC	$0.24^{(2)}$	0.1387	
CLC	$0.37^{(3)}$	0.215	

Vol. No.5, Special Issue No. (02), March 2016

www.ijarse.com

The Heating Loads induced inside the buildings

	CLAY BRICK	FLY- ASH BRICK	POROTHERM	AAC	CLC
Dining hall	5.334	5.296	4.979	4.895	5.058
Bedroom - 1	1.155	1.131	0.975	0.937	1.013
Bedroom - 2	1.233	1.219	1.085	1.050	1.117
Total Heat load (Ton)	7.722	7.646	7.039	6.882	7.188

Summary:

Total Heating Load in the building

withclay brick walls = 7.722 ton = 23366.56 kcal/hr.

Total Heating Load in the building

with Fly-ash brick walls = 7.646 ton = 23136.59 kcal/hr.

Total Heating Load in the building

withPorotherm block walls= 7.039 ton = 21299.82 kcal/hr.

Total Heating Load in the building

with AAC block walls = 6.882 ton = 20824.74 kcal/hr.

Total Heating Load in the building

with CLC block walls= 7.188 ton = 21750.69 kcal/hr

Vol. No.5, Special Issue No. (02), March 2016 www.ijarse.com

VII.CONCLUSION

Based on the above tests and analysis made we came to conclusions as follows:

Even though Clay bricks are used for so many years even more than a millennium in the construction field, it has its own limitations too. This makes an impact to go for the alternative building blocks in the construction industry.

Fly-Ash brick:

On comparing with clay brick, it shows better results in strength and heating load. Cost wise it is best in all cases. But it do not comes under light weight blocks and thermal efficient. Thus, it is the most economic choice among the building blocks we considered. Hence, it is very suitable to for both framed and load bearing buildings.

The other blocks we considered are Porotherm block, AAC block, CLC block:

These blocks comes under Light-weight and Thermal efficient blocks. Hence these blocks do not perform load bearing.

Cost wise AAC blocks shows higher cost of construction than other blocks. The light-density property of AAC blocks can be effectively utilized only for High-rise buildings and not for any typical structures. Hence it is an uneconomical choice for low raise buildings like apartments (< [G + 4]), individual houses and so on. It shows higher thermal efficiency than other blocks. Hence, better comfort can be felt.

CLC blocks is a better economic choice of construction than other light-weight blocks. The cost of construction is nearly same as the construction cost of clay bricks. The load efficiency of CLC block is less than Porotherm and AAC blocks. Its thermal efficiency is nearer to Porotherm blocks. Unlike AAC blocks, CLC blocks are not manufactured as factory made products. Hence, Quality of blocks may varies depends on manufacturing units.

The Thermal and Cost efficiency of Porotherm blocksis between AAC and CLC blocks. Based on our test results, it shows low compression strength than the expected values. The construction of wall units using Porotherm requires skilled labor and there may be difficulties in fixing electrical and plumping lines.

REFERENCE

- 1. Is 1077-1992 Common Burnt Clay Building Brick-Specification
- 2.Is 3495 (Part 1 To 4) Method Of Tests Of Burnt Clay Building
- 3. Is 3952 1988 Specification For Burnt Clay Hollow Bricks For Walls And Partition
- 4. Is.2185 (Part 3) -1984- Specification For Autoclaved Cellular (Aerated) Concrete Blocks
- 5. Is.6441 (Part 1 To 9) Methods Of Test For Autoclaved Cellular Concrete Products
- 6. Is.2185 (Part 4) 2008 Preformed Foam Cellular Concrete Blocks (Specification & Test Methods)
- 7. Is 3346 1980 Method For The Determination Of Thermal Conductivity Of Insulation Materials (Two Slab, Guarded Hot-Plate Method)
- 8. Hand Book Of Ishrae Indian Society Of Heating, Refrierating & Airconditioning Engineers