Vol. No.5, Issue No. 03, March 2016 www.ijarse.com

COMMON FIXED POINT THEOREM IN INTUITIONISTIC FUZZY METRIC SPACE

Preeti Sengar

Department of Applied Mathematics, SGSITS Indore, M.P.(India)

ABSTRACT

In this paper, we prove a common fixed point theorem for six self mapping in intuitionistic fuzzy metric spaces under various conditions. Our results generalizes the recent result of Ranadive and Chauhan [6].

Keywords: Absorbing maps, ∈ -chainable fuzzy metric space, Intuitionistic fuzzy metric space, Reciprocal continuous maps, Semi-compatible.

I.INTRODUCTION

The foundation of fuzzy mathematics is laid by Zadeh [7] with the introduction of fuzzy sets in 1965, as a way to represent vagueness in everyday life. Attanassov [1] introduced and studied the concept of intuitionistic fuzzy metric set as generalizations of fuzzy sets. Intuitionistic fuzzy metric set deals with both the degree of nearness and non-nearness. Park [4] defined the notion of intuitionistic fuzzy metric space with the help of continuous t-norm and continuous t-conorm as generalizations of fuzzy metric space due to George and Veeramani[3]. Ranadive, Gopal and Mishra [5] introduced the concept of absorbing maps in metric space and proved common fixed point theorem in this spaces with observing that the new notion of absorbing maps is neither a sub-class of compatible maps nor a sub-class of non compatible maps. Cho and Jung [2] introduced ϵ —chainable fuzzy metric space and proved common fixed point theorems for weakly compatible in ϵ —chainable fuzzy metric space. Ranadive and Chauhan [6] proved a common fixed point theorem for six self mappings using absorbing maps with ϵ —chainable fuzzy metric space.

II. PRELIMINARIES

Definition 2.1 A binary operation $*: [0, 1] \times [0, 1] \rightarrow [0, 1]$ is continuous t-norm if * satisfies the following conditions:

- (i) * is commutative and associative
- (ii) * is continuous;
- (iii) $a * 1 = a \text{ for all } a \in [0, 1];$
- (iv) $a * b \le c * d$ whenever $a \le c$ and $b \le d$ for all $a, b, c, d \in [0, 1]$.

Vol. No.5, Issue No. 03, March 2016

www.ijarse.com

Definition 2.2 A binary operation \Diamond : $[0, 1] \times [0, 1] \to [0, 1]$ is continuous t-conorm if \Diamond satisfies the following conditions:

- (i) ◊ is commutative and associative;
- (ii) ◊ is continuous;
- (iii) $a \lozenge 0 = a$ for all $a \in [0, 1]$;
- (iv) a \Diamond b \leq c \Diamond d whenever a \leq c and b \leq d for all a, b, c, d \in [0, 1].

Definition 2.3 A 5-tuple $(X, M,N, *, \diamond)$ is said to be an intuitionistic fuzzy metric space if X is an arbitrary set, * is a continuous t-norm, \diamond is a continuous t-conorm and M,N are fuzzy sets on $X^2 \times [0,\infty)$ satisfying following conditions:

- (i) $M(x, y, t) + N(x, y, t) \le 1$ for all $x, y \in X$ and t > 0;
- (ii) M(x, y, 0) = 0 for all $x, y \in X$;
- (iii) M(x, y, t) = 1 for all $x, y \in X$ and t > 0 if and only if x = y;
- (iv) M(x, y, t) = M(y, x, t) for all $x, y \in X$ and t > 0;
- (v) $M(x, y, t) *M(y, z, s) \le M(x, z, t + s)$ for all $x, y, z \in X$ and s, t > 0;
- (vi) for all $x, y \in X$, $M(x, y, \cdot) : [0, \infty) \to [0, 1]$ is left continuous;
- (vii) $\lim_{n\to\infty} M(x, y, t) = 1$ for all $x, y \in X$ and t > 0;
- (viii) N(x, y, 0) = 1 for all $x, y \in X$;
- (ix) N(x, y, t) = 0 for all $x, y \in X$ and t > 0 if and only if x = y;
- (x) N(x, y, t) = N(y, x, t) for all $x, y \in X$ and t > 0;
- (xi) $N(x, y, t) \lozenge N(y, z, s) \ge N(x, z, t + s)$ for all $x, y, z \in X$ and s, t > 0;
- (xii) for all $x, y \in X$, $N(x, y, \cdot) : [0, \infty) \to [0, 1]$ is right continuous;
- (xiii) $\lim_{n\to\infty} N(x, y, t) = 0$ for all $x, y \in X$.

The functions M(x,y,t) and N(x,y,t) denote the degree of nearness and the degree of non-nearness between x and y with respect to t respectively.

Definition 2.4 Let $(X, M, N, *, \diamond)$ be an intuitionistic fuzzy metric space. Then a sequence $\{x_n\}$ in X is said to be

- (i) Convergent to a point $x \in X$ if
 - $\underset{n\to\infty}{lim}_{n\to\infty}\,M(x_n,\,x,\,t)=1\,\,and\,\,\underset{n\to\infty}{lim}_{n\to\infty}\,N(x_n,\,x,\,t)=0\,\,for\,\,all\,\,t>0,$
- (ii) Cauchy sequence if

 $\lim_{n\to\infty} M(x_{n+p},\,x_n,\,t)=1 \text{ and } \lim_{n\to\infty} N(x_{n+p},\,x_n,\,t)=0 \text{ for all } t>0 \text{ and } p>0.$

Definition 2.5 An intuitionistic fuzzy metric space $(X, M, N, *, \diamond)$) is said to be complete if and only if every Cauchy sequence in X is convergent.

Definition 2.6 Let $(X, M, N, *, \diamond)$ be an intuitionistic fuzzy metric space and $\varepsilon > 0$. A finite sequence

Vol. No.5, Issue No. 03, March 2016 www.ijarse.com

 $x=x_0, x_1, x_2,...,x_n=y$ is called ϵ – *chain* from x to y if

 $M(x_i,x_{i-1},t)>1-\varepsilon$ and $N(x_i,x_{i-1},t)<\varepsilon$ for all t>0 and i=1,2,...n.

A intuitionistic fuzzy metric space $(X,M,N,*, \diamond)$ is called ϵ – *chainable* if for any $x,y\in X$ there exists an ϵ – *chain* from x to y.

Definition 2.7 Let A and B be two self-maps on intuitionistic fuzzy metric space $(X, M, N, *, \diamond)$. then A is called B-absorbing if there exists a positive R>0 such that

 $M(Bx,BAx,t) \geq M(Bx,Ax,\frac{t}{R}) \text{ and } N(Bx,BAx,t) \leq M(Bx,Ax,\frac{t}{R}) \quad \text{for all } x \in X.$

Similarly,B is called A-absorbing if there exists a positive R>0 such that

 $M(Ax,ABx,t) \ge M(Ax,Bx,\frac{t}{R})$ and $N(Ax,ABx,t) \le M(Ax,Bx,\frac{t}{R})$ for all $x \in X$.

Definition 2.8 Let A and S be self-mappings of an intuitionistic fuzzy metric space $(X, M, N, *, \diamond)$ Then a pair (A, S) is said to be commuting if M(ASx, SAx, t) = 1 and N(ASx, SAx, t) = 0.

Definition 2.9 Let A and S be mappings from a fuzzy metric space (X,M, *) into itself. Then,

the mappings are said to be compatible if $\lim_{n\to\infty} M_{-}(ASxn, SAxn, t) = 1$, $\forall t > 0$ whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} Axn = \lim_{n\to\infty} Sxn = x \in X$.

Definition 2.10 Self mappings A and S of a Fuzzy metric space (X, M, *) are said to be semi-compatible if and only if $M(ASxn, Sp, t) \rightarrow 1$ for all t > 0, whenever $\{xn\}$ is a sequence in X such that $Sxn, Axn \rightarrow p$ for some p in X as $n \rightarrow \infty$.

Definition 2.11 Let A and S be mappings from a fuzzy metric space (X,M,*) into itself. Then, the mappings are said to be reciprocally continuous if $\lim_{n\to\infty} ASx_n = Ax$, $\lim_{n\to\infty} SAx_n = Sx$ whenever $\{x_n\}$ is a sequence in X such that

 $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Sx_n = x \in X.$

Lemma 2.1 Let $\{u_n\}$ is a sequence in an intuitionistic fuzzy metric space $(X, M, N, *, \diamond)$. If there exists a constant $k \in (0, 1)$ such that $M(u_n, u_{n+1}, kt) \geq M(u_{n-1}, u_n, t)$ and $N(u_n, u_{n+1}, kt) \leq N(u_{n-1}, u_n, t)$ for $n = 1, 2, 3, \ldots$, then $\{u_n\}$ is a Cauchy sequence in X.

Lemma 2.2 Let $(X, M, N, *, \diamond)$.be an intuitionistic fuzzy metric space. If there exists a constant $k \in (0, 1)$ such that

 $M(x, y, kt) \ge M(x, y, t) \text{ and } N(x, y, kt) \le N(x, y, t)$ for all $x, y \in X$ and t > 0, then x = y.

III.MAIN RESULTS

Vol. No.5, Issue No. 03, March 2016 www.ijarse.com

Theorem 3.1 Let $(X, M, N, *, \diamond)$ be a complete ϵ -chainable intuitionistic fuzzy metric space with continuous t-

norm and continuous t-conorm \Diamond defined by $t*t \ge t$ and $(1-t)\Diamond(1-t) \le (1-t)$ for all $t \in [0, 1]$. Let A, B, S, T P and Q

be mappings from X into itself such that

 $P(X)\subseteq ST(X)$ and $Q(X)\subseteq AB(X)$.

There \exists a constant $k \in (0,1)$ such that

 $M(Px,Qy,kt) \ge \min\{M(STx,ABy,t)*M(STx,Qy,t)*M(Qy,ABy,t)*[M(Px,ABy,t)+M(Px,STx,t)]/2\}$

and

 $N(M(Px,Qy,kt) \leq \max\{M(STx,ABy,t)*M(STx,Qy,t)*M(Qy,ABy,t)*[M(Px,ABy,t)+M(Px,STx,t)]/2\}$

for all $x, y \in X$.

- (3) If one of P(X), ST(X), AB(X) and Q(X) is a complete subspace of X then
 - (a) The pair (A, BP) has a coincidence point.
 - (b) The pair (Q, ST) has a coincidence point.
- (4) AB=BA, ST=TS,PB=BP,QT=TQ.
- (5) The pairs $\{P, AB\}$ and $\{Q, ST\}$ are semi-compatible and reciprocally continuous, then A, B, S, T, P and Q have a unique common fixed point in X.

Proof: Let x_0 be an arbitrary point of X. By (1) there $\exists x_1, x_2 \in X$:

$$Px_0=ST x_1=y_0$$
 and $Qx_1=ABx_2=y_1$

In general, we can find a sequence $\{x_n\}$ and $\{y_n\}$ in X:

$$Px_{2n}=STx_{2n+1}=y_{2n}$$
 and

$$Qx_{2n+1}=ABx_{2n+2}=y_{2n+1}$$
, for n=1, 2 ...

By taking $x=x_{2n}$ and $y=x_{2n+1}$ in (2), we have

 $M(Px_{2n},Qx_{2n+1},kt) \geq min\{M(STx_{2n},ABx_{2n+1},t)*M(STx_{2n},Qx_{2n+1},t)*M(Qx_{2n+1},ABx$

$$[M(Px_{2n}, ABx_{2n+1}, t) + M(Px_{2n}, STx_{2n}, t)]/2$$

and

 $N(Px_{2n},Qx_{2n+1},kt) \leq max\{N(STx_{2n},ABx_{2n+1},t) \\ \lozenge N(STx_{2n},Qx_{2n+1},t) \\ \lozenge N(Qx_{2n+1},ABx_{2n+1},t) \\ \lozenge N(STx_{2n},Qx_{2n+1},t) \\ \lozenge N(STx_{2n},Qx_{2n+1},t)$

$$[N(Px_{2n}, ABx_{2n+1}, t) + N(Px_{2n}, STx_{2n}, t)]/2$$

 $M(y_{2n},y_{2n+1},kt) \ge \min\{M(y_{2n-1},y_{2n},t) * M(y_{2n-1},y_{2n},t) * M(y_{2n+1},y_{2n},t) * M(y_{2n+1},y_{2n}$

$$[M(y_{2n}, y_{2n-1}, t) + M(y_{2n}, y_{2n-1}, t)]/2$$

and

 $N(y_{2n},\!y_{2n+1},\!kt) \leq \max\{N(y2n-1,\!y2n,\!t) \lozenge N(y2n-1,\!y2n,\!t) \lozenge N(y2n+1,\!y2n,\!t) \lozenge N(y2n-1,\!y2n,\!t) \lozenge N($

$$[N(y_{2n}, y_{2n-1}, t) + N(y_{2n}, y_{2n-1}, t)]/2$$

www.ijarse.com

$$M(y_{2n},y_{2n+1},kt) \geq \min\{M(y_{2n-1},y_{2n},t)*M(y_{2n+1},y_{2n},t)*\ M(y_{2n},y_{2n-1},t)$$

$$\geq M(y_{2n-1},y_{2n},t)$$

and

 $N(y_{2n}, y_{2n+1}, kt) \le \max\{N(y_{2n-1}, y_{2n}, t) \lozenge N(y_{2n+1}, y_{2n}, t) \lozenge N(y_{2n}, y_{2n-1}, t)$

$$\leq N(y_{2n-1}, y_{2n}, t)$$

Similarly, we also have

$$M(y_{2n}, y_{2n+1}, kt) \ge M(y_{2n-1}, y_{2n}, t)$$

and
$$N(y_{2n}, y_{2n+1}, kt) \le N(y_{2n-1}, y_{2n}, t)$$

therefore for all n, we have

$$M(y_n, y_{n-1}, kt) \ge M(y_n, y_{n-1}, t/k) \ge M(y_n, y_{n-1}, t/k)$$

$$N(y_n,y_{n-1},kt) \leq N(y_n,y_{n-1},{}^t\!/_{\!k}) \leq N(y_n,y_{n-1},{}^t\!/_{\!k}2) \leq \ldots \leq N(y_n,y_{n-1},{}^t\!/_{\!k}n) \to 1 \text{ as } n \to \infty \text{ for any } t > 0.$$

For each $\varepsilon > 0$ and each t > 0, we can choose $n_0 \in \mathbb{N}$ such that

 $M(y_n, y_{n+1}, t) > 1 - \varepsilon$ and $N(y_n, y_{n+1}, t) < 1 - \varepsilon$. For all n > n0, m, $n \in \mathbb{N}$, we suppose that $m \ge n$. then we have that

$$M(y_{n}, y_{m}, t) \ge M(y_{n}, y_{n+1}, t/m - n) * M(y_{n+1}, y_{n+2}, t/m - n) * ... * M(y_{m-1}, y_{m}, t/m - n)$$

$$\ge (1 - \varepsilon) * (1 - \varepsilon) * ... * (1 - \varepsilon)$$

$$\ge (1 - \varepsilon)$$

Similarly $N(y_n, y_n, t) \leq (1 - \varepsilon)$.

Hence $\{y_n\}$ is a cauchy sequence in X; that is $y_n \to z$ in X; So its subsequences, Px_{2n} , STx_{2n+1} , ABx_{2n} , Qx_{2n+1} also converges to z. Since X is ϵ – *chainable*, there $\exists \epsilon$ – *chain* from x_n to x_{n+1} such that

$$M(y_i, y_{i-1}, t) > 1 - \varepsilon$$
 and $N(y_i, y_{i-1}, t) < 1 - \varepsilon$ for all $t > 0$ and $i = 1, 2, ... l$.

Thus we have

$$\begin{aligned} M(x_{n}, x_{n+1}, t) > & M(y_{1}, y_{2}, t/l) * M(y_{2}, y_{3}, t/l) * \dots * M(y_{i-1}, y_{i}, t) \\ & > (1 - \varepsilon) * (1 - \varepsilon) * (1 - \varepsilon) * \dots * (1 - \varepsilon) \\ & \geq (1 - \varepsilon) \text{ and} \end{aligned}$$

$$\begin{split} N(x_n, &x_{n+1}, t) < &N(y_1, y_2, {}^{\boldsymbol{t}}/{l}) \lozenge N(y_2, y_3, {}^{\boldsymbol{t}}/{l}) \lozenge \ ... \lozenge N(y_{i-1}, y_i, t) \\ &< (1-\epsilon) \lozenge (1-\epsilon) \lozenge (1-\epsilon) \lozenge ... \lozenge \ (1-\epsilon) \\ &\leq (1-\epsilon) \end{split}$$

So $\{x_n\}$ is a Cauchy sequence in X and hence there $\exists z \in X$ such that $x_n \to z$.

Vol. No.5, Issue No. 03, March 2016

www.ijarse.com

Since the pair of (P,ST) and (Q,AB) is reciprocal continuous; we have $\lim_{n\to\infty} P(ST)x_{2n} \to Pz$ and

 $\lim_{n\to\infty} ST(P)x_{2n} \to STz$ and semi-compatibility of (P,ST) which gives $\lim_{n\to\infty} ST(P)x_{2n} \to STz$, therefore

Pz=STz.we claim Pz=STz=z.

Step 1:Putting x=z and $y=x_{2n+1}$ in(2),we have

 $M(Pz,Qx_{2n+1},kt) \geq min\{M(STz,ABx_{2n+1},t)*M(STz,Qx_{2n+1},t)*M(Qx_{2n+1},ABx_{2n+1},t)*M(Qx_{2n+1},kt)\}$

$$[M(Pz, ABx_{2n+1}, t) + M(Pz, STz, t)]/2$$

and

 $N(Pz,Qx_{2n+1},kt) \leq \max\{n(STz,ABx_{2n+1},t) \rangle N(STz,Qx_{2n+1},t) \rangle M(Qx_{2n+1},ABx_{2n+1},t) \rangle$

$$[N(Pz, ABx_{2n+1}, t) + N(Pz, STz, t)]/2$$

Letting $n \rightarrow \infty$, we have

 $M(Pz,z,kt) \ge min\{M(Pz,z,t)*M(Pz,z,t)*M(z,z,t)*[M(Pz,z,t)+M(Pz,z,t)]/2\}$

and

 $N(Pz,z,kt) \le \max\{N(Pz,z,t) \lozenge N(Pz,z,t) \lozenge N(z,z,t) \lozenge [N(Pz,z,t) + N(Pz,z,t)]/2\}$

 $M(Pz,z,kt) \ge min\{M(Pz,z,t)*M(Pz,z,t)*1*M(Pz,z,t)\}$

≥ 1

M(Pz,z,t)=1

and N(Pz,z,t)=1.

Hence Pz=z=STz.

Step 2: Puting x=Bz, $y=x_{2n+1}$ in (2), we have

 $M(P(Bz),Qx_{2n+1},kt) \geq \min\{M(ST(Bz),ABx_{2n+1},t)*M(ST(Bz),Qx_{2n+1},t)*M(Qx_{2n+1},ABx_{2n+1},t)*M(Qx_{2n+1},kt)\}$

$$[M(P(Bz), ABx_{2n+1}, t) + M(P(Bz), ST(Bz), t)]/2$$

and

 $N(P(Bz),Qx_{2n+1},kt) \leq max\{N(ST(Bz),ABx_{2n+1},t) \lozenge \ N(ST(Bz),Qx_{2n+1},t) \lozenge \ M(Qx_{2n+1},ABx_{2n+1},t) \lozenge \ N(ST(Bz),Qx_{2n+1},t) \lozenge \ M(Qx_{2n+1},ABx_{2n+1},t) \lozenge \ M(Qx_{2n+1},ABx_{$

$$[N(P(Bz), ABx_{2n+1}, t) + N(P(Bz), ST(Bz), t)]/2$$

Letting $n \rightarrow \infty$ we have

Since PB=BP,AB=BA, so P(Bz)=B(Pz)=Bz and AB(Bz)=B(ABz)=Bz

 $M(Bz,z,kt) \ge \min\{M(Bz,z,t)*M(Bz,z,t)*M(z,z,t)*[M(Bz,z,t)+M(Bz,z,t)]/2\}$

and

 $N(Bz),z,kt) \le \max\{N(Bz,z,t) \lozenge N(Bz,z,t) \lozenge M(z,z,t) \lozenge [N(Bz,z,t) + N(Bz,z,t)]/2\}$

M(Bz,z,t)=1 and N(Bz,z,t)=1.

Therefore Az=Bz=Pz=z.

Vol. No.5, Issue No. 03, March 2016

www.ijarse.com

Step 3: $P(X)\subseteq ST(X)$, there \exists $u\in X$, such that z=Pz=STu.

Putting $x=x_{2n}$, y=u in (2), we have

 $M(Px_{2n},Qu,kt) \ge min\{M(STx_{2n},ABu,t)*M(STx_{2n},Qu,t)*M(Qu,ABu,t)*M(Qu,Abu,t)*M(Qu,A$

$$[M(Px_{2n}, ABu, t) + M(Px_{2n}, STu, t)]/2$$

and

 $N(Px_{2n},Qu,kt) \leq max\{N(STx_{2n},ABu,t) \lozenge \ N(STx_{2n},Qu,t) \lozenge \ M(Qu,ABu,t) \lozenge$

$$[N(Px_{2n}, ABu, t) + N(Px_{2n}, STu, t)]/2$$

Letting $n \rightarrow \infty$, we have

 $M(z,Qu,kt) \ge \min\{M(z,z,t)*M(z,Qu,t)*M(Qu,z,t)*[M(z,z,t) + M(z,z,t)]/2\}$

and

 $N(z,Qu,kt) \leq \max\{N(z,z,t) \lozenge \ N(z,Qu,t) \lozenge \ M(Qu,z\ ,t) \lozenge \ \big[N(\textbf{z},\textbf{z},\textbf{t}) + N(\textbf{z},\textbf{z},\textbf{t}) \big]/2\}$

M(z,Qu,t)=1 and N(z,Qu,t)=1.

Therefore z=Qu=Abu.

Since Q is AB-absorbing; then

 $M(Abu,ABQu,kt) \ge M(Abu,Qu,t/R) = 1$

i.e. $Abu=ABQu \Rightarrow z=ABz$.

Step 4: Putting $x=x_{2n}$, y=z in(2), we have

 $M(Px_{2n},Qz,kt) \ge min\{M(STx_{2n},ABz,t)*M(STx_{2n},Qz,t)*M(Qz,ABz,t)*M(Qz,A$

$$[M(Px_{2n}, ABz, t) + M(Px_{2n}, STx_{2n}, t)]/2$$

and

 $N(Px_{2n},Qz,kt) \leq max\{N(STx_{2n},ABz,t) \lozenge \ N(STx_{2n},Qz,t) \lozenge \ M(Qz,ABz,t) \lozenge$

$$[N(Px_{2n}, ABz, t) + N(Px_{2n}, STx_{2n}, t)]/2$$

Letting n→ ∞,we have

 $M(z,Qz,kt) \ge \min\{M(z,z,t)*M(z,Qz,t)*M(Qz,z,t)*[M(z,z,t)+M(z,z,t)]/2\}$

and

 $N(z,Qz,kt) \leq \max\{N(z,z,t) \lozenge \ N(z,Qz,t) \lozenge \ M(Qz,z\ ,t) \lozenge \ [N(\textbf{z},\textbf{z},\textbf{t}) + N(\textbf{z},\textbf{z},\textbf{t})]/2\}$

i.e. $M(z,Qz,kt) \ge M(z,Qz,t)$ and

 $N(z,Qz,kt) \leq N(z,Qz,t)$

Therefore z=Qz=ABz.

Step 5:Put $x=x_{2n}$,y=Tz in (2),we have

Vol. No.5, Issue No. 03, March 2016 www.ijarse.com

IJARSE ISSN 2319 - 8354

 $M(Px_{2n},QTz,kt) \geq \min\{M(STx_{2n},AB(Tz),t)*M(STx_{2n},Q(Tz),t)*M(Q(Tz),AB(Tz),t)*M(Q(Tz),t)*M(Q(Tz),t)*M(Q(Tz),t)*M(Q($

$$[M(Px_{2n},AB(Tz),t) + M(Px_{2n},STx_{2n},t)]/2$$

and

 $N(Px_{2n},QTz,kt) \leq max\{N(STx_{2n},AB(Tz),t) \\ \\ O(STx_{2n},Q(Tz),t) \\ O(M(Q(Tz),AB(Tz),t) \\ O(STx_{2n},Q(Tz),t) \\ O(STx_{2n},Q(Tz$

$$[N(Px_{2n}, AB(Tz), t) + N(Px_{2n}, STx_{2n}, t)]/2$$

Since QT=TQ, ST=TS, therefore Q(Tz)=T(Qz)=Tz, ST(Tz)=T(STz)=Tz,

Letting $n \rightarrow \infty$, we have

 $M(z,Tz,kt) \ge \min\{M(z,Tz,t)*M(z,Tz,t)*M(Tz,Tz,t)*[M(z,Tz,t) + M(z,Tz,t)]/2\}$

and

 $N(z,Tz,kt) \leq \max\{N(z,Tz,t) \lozenge \ N(z,Tz,t) \lozenge \ M(Tz,Tz\ ,t) \lozenge \ \big[N(\textbf{z},\textbf{Tz},t) \ + \ N(\textbf{z},\textbf{Tz},t) \big]/2\}$

i.e. $M(z,Tz,kt) \ge M(z,Tz,t)$ and

 $N(z,Tz,kt) \leq N(z,Tz,t)$

Therefore z=Tz=Sz=Qz

Hence z=Az=Bz=Pz=Sz=Qz=Tz.

Uniqueness: Let w be another fixed point of A, B, P, S, Q and T. Then

Put x=u,y=w in (2),we have

 $M(Pu,Qw,kt) \ge \min\{M(STu,ABw,t)*M(STu,Qw,t)*M(Qw,ABw,t)*[M(Pu,ABw,t) + M(Pu,STw,t)]/2\}$

and

 $N(Pu,Qw,kt) \le \max\{N(STu,ABw,t) \land N(STu,Qw,t) \land M(Qw,ABw,t) \land [N(Pu,ABw,t) + N(Pu,STw,t)]/2\}$

 $M(u,w,kt) \ge \min\{M(u,w,t)*M(u,w,t)*M(w,w,t)*[M(u,w,t) + M(u,w,t)]/2\}$

and

 $N(u,w,kt) \leq \max \{N(u,w,t) \land N(u,w,t) \land M(w,w,t) \land [N(u,w,t) + N(u,w,t)]/2\}$

i.e. $M(u,w,kt) \ge M(u,w,t)$ and

 $N(u,w,kt) \leq N(u,w,t)$

Hence $u=w \Rightarrow z=u=w$.

IV. CONCLUSION

Theorem 3.1 is a generalization of the result of Ranadive and Chauhan [6] and in the sense that employing the notion of semi-compatible and reciprocal continuity. Our result stronger than that Ranadive and Chauhan[6] we extend the above result of intuitionistic fuzzy metric space using absorbing maps.

Vol. No.5, Issue No. 03, March 2016 www.ijarse.com

VI. ACKNOWLEDGEMENT

The authors thank the anonymous referees for their suggestions that have led to improvements in the quality of the presentation.

REFERENCES

- [1] Attanassov, K., Intuitionistic fuzzy sets, Fuzzy sets and Systems, 20(1986),87-96.
- [2] Cho S.H., and Jung J. H., On common fixed point theorem in fuzzy metric space, Int. Math. Forum 1, 29(2006), 1441-1451.
- [3] George A., and Veeramani P., On some results in fuzzy metric space, Fuzzy Sets and Systems, 64(1994), 395-399.
- [4] Park, J. H., Intuitionistic fuzzy metric space, Chaos, Solitions and Fractals 22(2004), 1039-1046.
- [5] Ranadive, A. S., Gopal D., and Mishra U., On some open problems of common fixed point theorems for a pair of non-compatible self maps, Proc. Math.Soc.,B.H.U.,20(2004),135-141.
- [6] Ranadive, A. S., and Chauhan A.P., Absorbing maps and fixed point theorems in fuzzy metric space, International Mathematical Forum 5(10), (2010),493-502.
- [7] Zadeh, L. A., Fuzzy sets, Inform. And control 89 (1965), 338-353.