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ABSTRACT

In this paper an economic production quantity model is developed and analyzed for deteriorating items. Here it is
assumed that the production rate is dependent on stock on-hand having Pareto rate of decay. It is further assumed
that the demand follows a power pattern with an index parameter. The model behavior is analyzed by deriving the
instantaneous state of inventory at time t, stock loss due to deterioration and production quantity. By minimizing the
total cost of production the optimal values of production downtime (time point at which production stops),
production uptime (time point at which production resumes) and optimal production quantity are derived. The
sensitivity analysis of the model revealed that the stock dependent production rate can reduce the total production
cost and unnecessary inventory of goods. It is also observed that the Pareto rate of decay can well characterize the

deterioration of a commodity like cement. This model also includes several of the earlier models as particular cases.
Keywords EPQ, Pareto decay, stock dependent production, power demand pattern
I. INTRODUCTION

Recently much emphasis is given for analyzing economic production quantity models which provide the basic frame
work for monitoring and controlling the production processes for deteriorating items like cement, oil, food
processing, ic chips, textiles etc. Goyal and Giri [6], Ruxian Li et al. [10], Pentico and Drake [9] have reviewed
several types of inventory models for deteriorating items. Deterioration is characterized as loss of life or obsolete or
decay or evaporate due to various facto™ Since the deterioration is influenced by several random factors, the life time
of the commaodity is considered as random (Nahmias [8]). Several authors develop various economic production
quantity models for deteriorating items with various assumptions on life time of the commodity, pattern of demand
and production. (Skouri and Papachristos [11], Chen and Chen [4], Balkhi [2], Manna and Chaudhari [7], Teng et al.
[17], Abad [1], Goyal and Giri [5]) have developed inventory models for deteriorating items with finite rate of
production. Recently Srinivasa Rao et al. [13], Srinivasa Rao et al. [15], Begum et al. [3] have developed and
analyzed EPQ models for deteriorating items with generalized Pareto decay and constant rate of production.
Umamaheswara Rao et al. [18], Venkata Subbaiah et al. [19], Srinivasa Rao et al. [14] have developed and analyzed

economic production quantity models with weibull rate of decay and constant rate of production. Sridevi et al. [12],
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Srinivasa Rao et al. [16] have developed and analyzed economic production quantity models with random
production having constant decay.

In all these models, the production rate considered to be independent of stock on hand. But in reality if the product
is produced without considering the on hand stock the situation may lead excess inventories or heavy shortages.
Therefore it is the common practice in several of the industries dealing with perishable items cements, chemicals
etc., the production rate is adjusted depending on the stock on hand i.e. if more stock is there then the production rate
is reduced and if the less stock is there the production rate is increased. This type of production rate is known as
stock dependent production. Very little work has been reported in literature regarding economic production quantity
models with stock dependent production. Hence in this paper an economic production quantity model with stock
dependent production rate and time dependent demand having Pareto decay is developed and analyzed. The Pareto
decay is capable of characterizing the life time of the commaodities having asymmetrically distributed variates. Its
instantaneous rate of decay is inversely propositional to ageing. Assuming shortages are allowed and fully
backlogged the model is developed. It is also developed to the case of without shortages.

The rest of the paper is organized as follows: section 2 deals with notations and assumptions and section 3
development of the EPQ model. In section 4, the optimal operating policies of the model are derived. In section 5, a
case study dealing with cement industry is presented. Section 6, is concerned with sensitivity analysis of the model
with respect to parameters and costs. Section 7, deals with the EPQ model without shortages. Section 8 is to discuss

the conclusions and scope for further work.

I1. NOTATIONS AND ASSUMPTIONS OF THE MODEL

2.1 Notations

A Set up cost

T Shortage cost per unit per time

D (t) Demand rate

EPQ Economic Production Quantity

h Inventory holding cost per unit time

H Total inventory holding cost in a cycle time

I (t) Inventory level at any time T

c Unit production cost of the item

Q Production Quantity

5, Maximum inventory level

5 Maximum Shortage level

R (t) Rate of production at any time t

S Selling price of the items

s, Total Shortage cost in a cycle time

t Time Point at which Production stops
(Production down time)

t;  Time Point at which shortages begins

t;  Time Point at which Production resumes (Production up time)
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T Production cycle time

TC  Total production cost per unit time

TP Profit rate per unit time

TR  Total revenue of the system pr unit time

b Deterioration rate parameter

(r,n, 7,a,d) Demand rate parameters

(n, k) Production rate parameters

2.2 Assumptions

I Life time of the commodity is random and follows a Pareto distribution having probability density function

b
of the form f(t) = thbi_i: t=8 be=0

The instantaneous rate of deterioration is hit) = % = 13; b=0 t=8

1
i Tt -
. The demand is known and the demand rate is time dependent i.e. of the form  D{t} = o —. This is known

nin

as power demand pattern, where r is the fixed quantity and n is the parameter of power demand pattern, the
value of n may be any positive number.

i, The rate of production is dependent on stock on hand and is of the form

n—klx, 0=t=t,
R{t:] =in. thtE Tx
a, otherwise

where 7 is a constant such that n > 0, k is the stock dependent production rate parameter, 0 <k < 1. It is
assumed that R(t) > D(t) at any time where replenishment takes place. If k=0, then it includes the finite rate

of production.

iv. There is no repair or replacement of deteriorated items.

V. The planning horizon is finite. Each cycle will have length T.

Vi. Lead time is zero.

Vil. The inventory holding cost per unit time (h), the shortage cost per unit per unit time (), the unit production

cost per unit time (c) and set up cost(A) per cycle are fixed and known.

I11. EPQ MODEL WITH SHORTAGES

3.1 Model formulation

Consider an inventory system for deteriorating items in which the life time of the commaodity is random and follows a
Pareto distribution. Here, it is assumed that shortages are allowed and fully backlogged. In this model the stock level
for the item is initially zero. Production starts at time t=0 and continues adding items to stock until the on hand
inventory reaches its maximum level S; At time t = 0 deterioration of the item starts and stock is depleted by
consumption and deterioration while production is continuously adding to it. At time t = t;, the production is stopped
and stock will be depleted by deterioration and demand until it reaches zero at time t = t,. As demand is assumed to

occur continuously, at this point shortage begin to accumulate until it reaches its maximum level of S, at t = t;. At this
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point production will resume meeting the current demand and clearing the backlog. Finally shortages will be cleared
at time t = T. Then the cycle will be repeated indefinitely. These types of production systems are common in cement
industries where production rate is stock dependent.

The schematic diagram representing the inventory system is shown in fig. 1

Inventory level I (t)

15

Fig.1 Schematic diagram representing the inventory level of the system with- shortages.

The differential equations governing the system in the cycle time (0, T) are;
1

d(t) rtn"
4 =N KO -REIE - —. 0= (1)
1 nTn
® 2t
dl rton-
T=—h{t2]1{t§]— T =ttt (2)
nTn
i,
dit e t, =t < t,(3)
Y T 1 =L=1;
dt WTH
1
dit e t,=t< T(4)
= '|'| - T+ T = =
dt T

With the initial conditions, 1 (0) =0, 1 (t;) =0and 1(T)=0,

Solving the differential equations (1) to (4) the on hand inventory levels at time t are respectively.

I(t) = e ¥t P ]qg{t,h, k) — % f(t. b, kj}J

nTn
0=t=t(3)
t t 1
where, gt. b, k) = J‘ el du, it b k) = J‘ gy n dy (6)
] ]
1
r b+ L
1) =—1[t:+”t‘b —tn] Sty SEE 5(7)
(1 +bn)Tn
r[f 1t
I{t;]:—l[tg'—tn], t; St =1;(8)
Tn

It =qt—T) +H—2[Ti—ti] ., =t=T (9
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The total inventory in the time period 0 <t <t; is

ty ty
I I(0dt = [ Pl ]ng{t,b,k:' -2 ; fit. b, H:]}dt (10}
o o o

nTn

where, g (t, b, k) and f(t, b, k) are defined as in equation (6)

The total inventory in the period (i, t,) is

13 t 1
f I{t:]dt=J‘ ;i[t?”t‘h—t%]dt (1)
ty {1+ bnTo

Since | (t) is continuous at t;, equating (5) and (7) to establish the relationship between t; and t,.

1+boy _ 1
g i

) o
—f(ty. b, l-::]} +t, ”] (12}
nTh
. " i
where, glt,. bk} = J‘ e uPdu, flt,, bk) = J‘ euTn T du (13}
o ]

The maximum inventory level S;=1 (t,) is

S, = e Kagh [ng{tl, b, k) — —¢flt,, h,kj} (14)

nTw
where, g(t;, b, k) and f(ty, b, k) are defined as in equation (13)
Similarly, since | (t) is continuous at t; equating equations (8) and (9) to establish the relationship between t, and ts,
therefore

t=[142 (- DT (15)
r
The maximum shortage level S, =1 (t3) is

r[t L

.= 5[ d] )
Tal ™

The backlogged demand is

.
B0 = Tra (7

tz nTE

Stock loss due to deterioration at time t is

t t
1@ = [ ROde- [ DO 109
i) o

1y
=qlt, + T—t5) — Iy j t P e ®glt, b, k) dt
o

1
kr 1t Tetn~t
+—5 | tPe Mt b k)dt— f —dt — I(t) (18)
nTo*? L nTm
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where, g (t, b, k) and f (t, b, k) are as defined in equation (6)

Total production in the cycle time (0, T) is

Q= J:i R(t)dt + J‘TR{t]dt

tz

= [;*ndt + [ ndt — k[ 10 dt

ty I.{l" ty
=qlt, + T —t;) — me t7P e ¥glt, b, k)dt + —J tPe it b, k)dt (19)
. 1

nTn-0
where, g (t, b, k) and f(t, b, k) are defined as in equation (6)
Let TC (13, t3, T) is the total cost per unit time. Then, TC (t3,t; T) is the sum of the setup cost per unit time, the
production cost per unit time, inventory holding per unit time and the shortage cost per unit time i.e.,

A ¢ H
TClty.t, T) = =+ = i

— 1 — 2
T+ HT (20)
Holding cost in a cycle time is
ty tz
H= hU It )dt + f I(t) dt] (21)
) ty
Shortage cost in a cycle time is
tg T
S =::U —I{t]dt+J‘ —I(t) dt] (22)
iz i3

Therefore, the total cost per unit time is

TC(t, 1. T) =2 + 50

Rt 1z
t1 U‘D It )dt + L I{tJdt] (23)

This implies,
A (h —c 1
TC(ty,t.T) = — + ﬂ{t1 +T-t) + (b= clon f tPe®glt, b,k dt
T T T 5
(ck —h)r| ™
+ |— J‘ t et b, k)
ﬂTE+1 o
hr- i+n L
- T [{1 +hn:|{l+ﬂlit!—]‘]} To*!
(1+bn)(1 —b)(1+ )T r

(1+bn)

1 L4
— (1 +n)ti® {1 + ;{tg - TZI} T84 n(1 - hiltf+ ]

nr ] 1 £+1 | 1+n
- |1 40 - —TIToty + To (1 —{1+—(t; - T)

{1+[’1:|T%+1|: r - ( { T } ]]
+ %{T — )7 (24)

where, g (t, b, k) and f(t, b, k) are as defined in equation (6)
3.2 Optimal Operating Policies of the Model
In this section, the optimal policies of the inventory system developed in section (3.1) are derived. To find the optimal

values of production down time t; and production up time t; one has to minimize the total cost TC (t, t3T) in
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equation (24) with respect to t; and t; and equate the resulting equations to zero. The condition for the solutions to be
optimal (minimum) is that the determinant of the Hessian matrix is positive definite i.e.
8*TClt,. t, T) 8°TC(t,. t,. TD
8t3 8t, dt,
=\, . - >
A TC(t, . by, T) A2TC(ty, 5. T)
Bt, dt, a3

0 (25)

Differentiating TC (1, t3, T) with respect to t; and equating it to zero implies

(ck —h)

8TCt.t5T) ¢ (h — ckln c r
* =cnt——— e Mgt b )+ e il b K
t nTo*
hr 1 1+bn L
+—1[tg —t;b{l +ﬂ(tg - rj} T‘”u]
(1 +bm)To™ g
=0 (26)

where, g (ty, b, k) and f (t;, b, k) are as defined in equation (13)

Differentiating TC (ty, t3, T) with respect to t; and equating it to zero implies

i+bn h b

T(1-b)

aTC(t,.t,T) ¢ [
T

RITIRTRAP
v el #
ﬂt! 1 T u

{l_b:]+H]{l+?{tg—T]} {1+?{tg—]']}
=0 (27)

Solving the equations (26) and (27) simultaneously using numerical methods one can obtain the optimal values of t;

and ts. Substituting these optimal values of t; and t5 in the equation (15), (19) and (24) one can get the optimal values

of £5, production quantity Q and total cost TC (t, t T) respectively. For each set of optimal values, the determinant of

the Hessian matrix is computed and verified for positive semi definiteness.

3.3 Numerical Illustration

To expound the model developed, consider the case of deriving and economic production quantity, production down
time and production up time for a cement industry. Here the product is of a deteriorating type and has a random life
time which is assumed to follow Pareto distribution. Form the records and discussions held with the production and
marketing personnel the values of various parameters are considered. For different values of the parameters and costs,
the optimal values of production down time, production up time, optimal production quantity and total cost are
computed and presented in Table 1.

From Table 1, it is observed that when increase in deterioration parameter b from 1.1 to 1.5 units results a decrease in
production down time £, production quantity Q* and an increase total cost TC* i.e. t; from 2.393 to 2.015 months,
Q* from 189.24 to 187.172 units and total cost TC* from

335.323 to 352.088. There is a slight decrease in production up timets, from 10.951 to 10.722 months. When the
demand rate t increases then the optimal production down timet;, production up timetz, production quantity Q* and
total cost TC* are increasing. The increase in holding cost h results a decrease in production down time t; from 2.319
to 2.017 months, production up time, 3 from 11.001 to 10.701 months and increase in production quantity Q* from

183.417 to 187.781 units and increase in total cost TC* from * 319.54 to "358.885. The increase in shortage cost ©
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has significant effect on all optimal policies viz. production down timet: from 1.988 to 2.940 months, production up
time tz from 10.76 to 11.322 months, production quantity Q* from 182.897 to 202.281 units and total cost TC* from
304.398 to "357.851. The increase in production rate parameter k results an increase in production down time,

decrease in production up time, production quantity and increase in total cost i.e. Production quantity Q* from
222.058 to 186.715 and total cost from ™ 341.124 to " 342.588.

3.4 Sensitivity analysis
To study the effect of changes in the parameters and costs on the optimal values of production down time,
production up time and production quantity sensitivity analysis is performed taking the values A= "100,c= " 4,h=
©5,T=12months,t="15,r=200units, b= 1.2, k=0.4, 1= 60.
Sensitivity analysis is performed by changing the parameters by -15%, -10%, -5%, 0%, 5%, 10% and 15%. First
changing the value of one parameter at a time while keeping all the rest at fixed values and then changing the values
of all the parameters simultaneously, the optimal values of t;, t;, Q and TC are computed and the results are presented
in Table 2. The relationship between parameters, costs and the optimal values are shown in fig 2.
From Table 2, it is observed that the demand rate T and deteriorating parameter b have significant effect on
production down time, production up time, production quantity and total cost. Decrease in unit cost ¢ results increase
in Q* from 183.221 to 193.049 units and decrease in TC* from * 364.810 to ~ 314.671. The increase in production
rate parameter 1) increases the production quantity Q*and total cost TC* from 162.866 unitsto ~ 212.126 units and
323.045 to * 387.294. The increase in shortage cost results in decrease in production quantity Q* from 224.753 units
to 170.239 units and increase in total cost from * 335.244 to * 359.132.

—1(200) \o.0s 1(200)
11(2) T, XJ}_-; —11(2-)
i—' *m “ s i C(—1)
E @ ||z S\ é S~
.§ hes) .5 n-o N —N(5)
*é E o —_—1(0.6
= —k(06)| | E ,.U(_’S' N\ 00
ks S g ——D(1.2)
| ——b(1.2) //;0.74 A\
3 10 ] 107 \_'- }F(("O)
.10 }F((.'O) o i
20%  -10% 0%  10%  20% 20%  -10% 0%  10% 209 70)
% Variation in parameters % Variation in parameters
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Fig. 2 Relationship between optimal values and parameters
IV. EPQ MODEL WITHOUT SHORTAGES
4.1 Model formulation

Consider a production system in which the production starts at time t = 0 and inventory level gradually increases

with the passage of time due to production and demand during the time interval (0, t;). At time t; the production

is stopped and let S; be the inventory level at that time. During the time interval (t;, T) the inventory decreases partly

due to demand and partly due to deterioration of items. The cycle continues when inventory reaches zero at time t =

T. The schematic diagram representing the model is shown in fig 3.

5

|
|
|
Lt _Time (1)

|

Fig 3 The schematic diagram representing the inventory level of the system without shortages
The differential equations governing the system in the cycle time (0, T) are;

1
T

TR = - MO - OO - 0 = t=t,(28)

nl

-

=l

1
dI{t) rtnt
—=-hlt) —— ., =t= T (29
dt =
nTn
with the boundary conditions | (0) = 0 and I (T) = 0, Solving the differential equations (28) and (29)
The instantaneous state of inventory at any time t during the interval (0, t,) is obtained as

() = ekt qu(t,b, Q) — —ft.b, kj},
nTn
D=t=t, (30)
where, g (t, b, k) and f (t, b, k) are as defined in equation (6)
The instantaneous state of inventory at any time t during the interval (t;, T) is obtained as

10 = m [T
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t,=t<T (31)

The total inventory in the time period 0 <t <t;is

Itil{ﬂdt =

o

ty r
J‘ e‘“t‘h]ng(t,b,k] - Lf‘(t,b,k]}dt,
o

nTn

0<t<t, (32)

where, g (t, b, k) and f (t, b, k) are as defined as in equation (6)
and
the total inventory in the time period t; <t<Tis
pet X

Itat = T [T R tn] dt (33)
Ty t {1 4+ bn)To
The maximum inventory level S;=1 (t;) is

r
5 = E_mitfh ]ﬂg{tl,b, k) — —f(t,. b, l{j} (34)
nTn

where, g (ty, b, k) and f (t;, b, k) are as defined in equation (13)
Stock loss due to deterioration at time t is

t t
Lt =f R(t) dt—f D(tldt — I(t) (33)
o o
i i
ts kr T tipgnt Trtat
L(t) = nt, — Im f t Pe ¥t b, k)dt + 1J‘ tPe it b, k)dt - f —dt f — dt—It
o nTn ¢ P pTon "t pTo

0=t=T  (36)

where, g (t, b, k) and f (t, b, k) are as defined in equation (6)
Total production quantity in the cycle time (0, T) is

Q= J:iR{t;] dt

ty
=nt, — l-rqj tPe ¥alt b, k)dt +
o

[P e (e b, K)dt (37)
nTH

where, g (t, b, k) and f (t, b, k) are as defined in equation (6)

Let TC (t, T) is the total cost per unit time. Then, TC (t;, T) is the sum of the setup cost per unit time, the production

cost per unit time and inventory holding cost per unit time i.e.,

H

T

(1) =545
T, T) = +20Q+ (38)
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Holding cost in the cycle time T is

ti T
H=hU I{t:]dt+J‘ I{t;]dt] (39)
] ty
Therefore the total cost per unit time is
TC(t,.T)
A ¢ h[ T
==+= = Iithdt J‘I dt 40
tererg|[ @as [ 10a] o
This implies,
A C (h—ckn & (ck —h)r ™
TC(t,, T) =—-I-—r|t,_+—r|J‘ e‘“t‘hg{t.h,k]dt+—ij‘ e Pt b, k)dt
T T T 5 ATatt o

+

hr
E
(1+bn)Tn
Y b —bat ot
(1+bn)Tn™ —(n+ 1)T" nt] +m:1—h,|t'1=
1 -hi{1+n)

1

(41)
where, g (t, b, k) and f (t, b, k) are as defined as in equation (6)

4.2 Optimal Operating Policies of the Model
In this section, we obtain the optimal policies of the inventory system developed in section (4.1). The problem is to
find the optimal values of production down time t; that minimize the total cost TC (t;, T) over (0, T). To obtain the
optimal values we differentiate TC (t;, T) in equation (41) with respect to t; and equate the resulting equation to zero.
The condition for the solutions to be optimal (minimum) is that

ree. Tgil L (42)

Differentiating TC (t;, T) with respect to t; and equating to zero one can get

8TC(t,, T) . .
s (43)
c nlh — ck)
T +Te““itz"g{t1,h,tﬂ
(c —hk)r
4+ ——— e M P, b K)
nTon**
hr L L
+—£[tf - t;hT‘”u] =0 (44)
(1+ bn)Tn

where, g (t1, b, k) and f (ty, b, k) are as defined as in equation (13)
Solving the equation (44) using numerical methods one can get the optimal value of t;. Substituting the optimal value
of t; in the equation (37) and (41) the optimal values of production quantity Q and total cost TC can be obtained

respectively.
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4.3 Numerical Illustration

To expound the model developed, consider the case of deriving an economic production quantity and production
down time for a cement manufacturing unit. Here, the product is deteriorating type and has random life time and
assumed to follow a Pareto distribution. Based on the discussions held with the personnel connected with the
production and marketing and the records it is observed that the deterioration parameter b is estimated to vary from
1.2 to 1.6 months and demand parameter r to vary from 200 to 300 units respectively. The other parameters are
considered as T =12 months, c= " 3to ~ 5,h="4to * 6, k=0.4t0 0.8 and n = 50 to 70. Substituting the values of
the parameters and costs in the equation (44) and solving numerically, the optimal values of production down
time £, production quantity Q* and total cost TC* are obtained and are presented in Table 3.From Table 3, It is
observed that the increase in deterioration parameter b from 1.2 to 1.6 has shown an increasing trend in production
down time t; from 7.264 t07.616 months, production quantity Q* from 299.569 to 320.422 units and total cost TC*
from "267.290 to "267.436. Whereas an increase in demand parameter r from 200 to 300 results as a increase in
optimal values of £; from 6.574 to 7.821 months, Q* from 265.933 to 331.535 units and TC* from *~ 257.734 to Rs
272.31.

The increase in unit cost ¢ from * 3 to ~ 5 has a decreasing effect on £; and Q* an increasing effect on TC* viz.
Production down time £; from 7.454 to 7.078 months, production quantity Q* from 304.117 to 294.610 units, total
cost TC*, from ~ 242.117 to * 292.047. The increase in holding cost h from “4 to * 6 results an increase in optimal
values ti, Q* and TC* i.e. production down time t; from 7.078 to 7.39 months production quantity Q* from
294.610 to 302.883 units and total cost TC* from "235.304 to ~298.998

The increase in production rate parameter k from 0.4 to 0.8 results an increase in optimal values £; and decrease in
production quantity Q* and total cost TC” i.e. production down time t: from 6.669 to 7.763 months, production
quantity Q* from 307.428 to 292.277 units and total cost TC” from " 292.999 to 245.862. Whereas the increase in
production rate parameter n from 50 to 70 results a decrease in production down time t; from 7.821 to 6.787

months, increase in production quantity Q*276.279 to 321.717 units and total cost TC” from * 228.314 to * 303.164

4.4 Sensitivity Analysis

To study the effects of changes in the parameters on the optimal values of production down time and production
quantity a sensitivity analysis is performed taking the values of the parametersas  b=1.2,n=2,r=250,c= "4/-,
h = "5/-, k=0.6, A = 100 and n = 60.Sensitivity analysis is performed by changing the parameter values by -15%, -
10%, -5%, 5%, 10% and 15%. First changing the value of one parameter at a time while keeping all the rest at fixed
values and then changing the values of all the parameters simultaneously, the optional values of production down
time, production quantity and total cost are computed. The results are presented in Table 4. The relationship between
parameters, costs and the optimal values are shown in Fig 4.

From Table 4, It is observed that variation in the deterioration parameters b has considerable effect on production
down time, optimal production quantity and total cost i.e. production down time t; from 7.079 to 7.432 months,
production quantity Q* from 289.375 to 309.27 units and total cost TC* from * 267.037 to Rs 267.411 Similarly

variation in demand parameter r has slight effect on production down time t; from 6.761 to 7.692 months and
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moderate effect on production quantity Q* from 274.537 to 323.658 units and total cost TC* from * 260.66 to
271.389. The decrease in unit cost ¢ results an increase in production down time £; from 7.152 to 7.378 months,
optimal production quantity Q*, from 296.593 to 302.569 units and decrease in total cost TC* * 282.194 to
*252.236 The increase in production rate parameters k and n results slight variation in production quantity Q*from
303.068 to 296.19 units and from 278.659 to 319.563 units and total cost TC* from * 278.322 to " 257.134 and from
©232.366 to © 299.702 respectively. The increase in holding cost h has significant effect on optimal values
production down time £ from 7.132 to 7.363 months, production quantity Q* from 296.058 to 302.176 units and
total cost TC* from * 243.337 to * 291.089. When all the parameters change at a time that highly effects on optimal
values i.e. production down time #; from 7.252to 7.296 months, production quantity Q* from 259.597 to 338.122
units and total cost TC* from * 209.856 to ~ 330.065 respectively.A comparative study of with and without
shortages revealed that allowing shortages has significant influence on optimal production schedule and total cost.
This model includes some of the earlier inventory models for deteriorating items with Pareto decay as particular
cases for specific values of the parameters When k = 0, this model includes EPQ model for deteriorating items with
Pareto decay and constant rate of demand and finite rate of replenishment. When b = 0, this model becomes EPQ
model with stock dependent production and time dependent demand. When n=1, this model includes EPQ model

with stock dependent production and constant rate of demand.
V/. CONCLUSIONS

This paper introduces an EPQ model with a stock dependent production rate and time dependent demand having
Pareto decay. The stock dependent production will avoid wastage in excess inventories and loss due to shortages.
The Pareto rate of decay can well characterize the life time of the commodities like cement which exhibit high rate
of decay in the early periods and slow rate of decay after certain period. That is the lifetimes are left skewed having
long upper time distribution. The optimal production down time, production uptime and production quantity are
derived using MathCAD code and Hessian matrix. A case study dealing with perishable item like cement has
demonstrated that the stock dependent production rate has significant influence on total production cost.

The sensitivity analysis of the model reveals that the deterioration parameters and demand parameters have
tremendous influence on optimal values of the production down time and up time. With historical data on lifetime
and demand the production manger can estimate the parameters of the model can produce optimal production
quantity. This model can also be extended with inflation and delay in payments which will be taken elsewhere. For
specific values of the parameters this model provides spectra of models which are useful for scheduling a variety of

production processes.
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Table 1 OPTIMAL VALUES OF ty, t3, Q and TC for different values of the parameters and
costs for the model-without shortages

r n k ¢ b n =® A t1 t3 Q= TC*
100 I 06 10 L. &0 & 100 2206 10.B50 18745 340.363
150 1963 11.175 153.154 2B8B.306
175 2194 11051 172732 314306
235 21679 10838 211.355 357.606
250 3233 10821 238668 372403
15 1256 103537 0549 379722
25 2196 11.088 174033 309211
3 1995 11.186 158517 286.393
35 1959 11.322 149608 267.167
04 2191 10889 222058 341.124
0.5 2205 10873 187.793 339481
0.7 2216 10846 186715 340922
08 2225 10819 186368 342588
g 2805 10807 215707 305714
9 2123 10827 189495 323806
11 21189 10876 185126 356.749
12 1189 10909 183.146 373.066
2319 11.001 183417 319540
2210 10891 184371 331.751
2070 10746 187522 351.266
2017 10701 187.781 35B.883
L1 1393 10951 18924 335323
L3 2081 10782 187343 346388
14 2028 10729 18722 350.023
15 2015 10722 187172 352.088
30 2904 10.814 186.755 307.674
33 2495 10819 186819 325138
&3 1.991 10.854 188331 353.632
70 1990 11.022 192302 362423
4 1.998 1076 182897 304398
5 1196 10846 187.241 322665
7 2392 10923 191.297 353452
& 21940 11322 202281 357851

90 2206 10850 18745 339529
95 21206 10850 18745 339946
105 2206 10.850 18745 340.779
110 2206 10850 18745 341.196
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Table 2 Sensitivity Analysis of the model with —shortages
Parameters Optimal percentage Change in parameters(Cyele Time = 12 months)
values -15% -10% 5% 0% +5% +10% +15%
1(200) t 1994 2175 2190 2206 2268 2366 2.693
£ 11020 11010 10888 10850 10793  10.708  10.706
Q+ 165323 174779 183.605 187.450 194523 204926 220423
TC: 310368 319551 33115 340363 349787 360156 165973
n(2) t; 2324 2238 2227 2206 2203 2.088 2.012
t; 10712 10769 10.801 10850 10912 10919 10927
Q+ 199441 192809 190901 18745 183961 178635 174914
TC: 361232 354074 347303 340363 33322 328404 323691
c(4) t; 2298 2232 2224 22060 2206 2.189 2.180
£ 10825 10827 10849 10850 10891 10896  10.901
Q+ 193049 189995 188317 18745 18499 183926 183221
TC* 314671 323806 331713 340363 347974 356444  364.810
h(5) t; 2460 2380 2320 2206 2114 2.069 2.007
t; 10953 10933 10914 10850 10797  10.763 10.735
Q+ 192446 190.173 188681 18745 186472 186456 185279
TC* 328054 331638 33529 340363 345327 349393 353332
k(0.6) t; 2190 2191 2195 2206 2233 2256 2.300
t5 10841 10844 10846 1085 10861  10.882  10.910
Q+ 188939 188237 187.742 187450 187445 186645 186.308
TC* 340475 340434 340426 340363 340026 339533 338967
b(1.2) t; 2401 2307 2239 2206 2190 2177 2.153
t; 10948 10904 10867 10850 10842  10.841 10.840
Q+ 189420 188250 187.698 187450 187406 187.066 186.210
TC* 333633 336074 338533 340363 341854 343172 344692
n(60) t; 2289 2288 2237 2206  2.090 2.045 2.034
t5 10895 10877 10.870 10850 10788 10754  10.736
Q+ 162866 172326 179.125 187450 194416 202931 212126
TC* 323453 326076 332425 340363 35376 369.600 387.294
% (5) t; 3022 2864 2548 2206  2.066 2.032 2.023

t3 10805 10.812 10.835 10830 10874 10.911 10,998

Q= 234753 217812 203897 187450 179638 175874 170.23%

TC= 335244 336979 337.024 340363 346444 351932 359132

AC100) TC= 339113 339.52% 339546 340363 340779 34119 341.613
£ 2239 2227 2126 2.206 2.200 2.143 1.996

All t3 10754 10785  10.824 1085  10.857 10.92% 10,963
Parameters Q= 165650 172.884 180344 187450 196126 202784 208738
TC= 259.045 285187 312092 340363 370408 398296 435514
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Table 3 OPTIMAL VALUES OF t;, Q and TC for different values of the parameters and costs

for the model-without shortages

Paramesters (Cyela Time T = 12 months) Optimal Values

T n k c B b g A i q- TC™
150 I s 4 £ 12 60 100 T.264 109,569 167.29
200 6.574 265933 257734
225 6.9319 283.031 263.202
275 7.577 316.261 270.262
300 7.821 331.535 27231
0.3 9512 355859 312441
1.5 802 321.473 282744
3 6182 264.373 243548
4 5432 237.941 225449
04 6.669 307 428 292 999
035 6.978 303.482 279603
07 T7.526 295822 256.059
03 T7.763 292277 245 862
3 7454 304.553 242117
35 7.359 302.071 254755
45 7171 297.100 27972
5 T7.078 204 610 202 047
4 T7.078 204 5610 235304
45 T.181 207366 251.343
5.5 7.333 207366 283318
& 739 302 383 298 998
13 7.359 305.012 267.371
14 7449 310297 267419
15 7.535 315445 267439
16 7.616 320422 267436
50 T7.5821 276279 228314
55 7.532 288.09 248.222
65 T7.017 310.791 285.584
70 6787 321717 303.164
o0 7.264 299 569 266.456
95 7.264 299 569 266873
105 T7.264 299 569 267.706
110 T7.264 299 569 268.123
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Table 4 Sensitivity Analysis of the model-without shortages

Parameters  Optimal Percentage Change in parameters(Cycle Time = 12 months)
Values -15% -10% -5%% 0% +5% +10% +15%
t] 6761 5939 7.106 7264 T414 1.557 7692
i 250) Q= 274537 283031 291359 299569 307683 315724 323658
TC* 260.66 263202 2654 26729 268901 27026 271389
t 7654 7544 7401 7264 7134 7.01 6.891
o) Q= 31234 307973 303.72 299569 295558 291671 28789
TC* 276.164 273086 270131 26729 264.352 261911 25936
t 7378 734 7.302 7.264 7227 7.189 T7.152
c(d) Q= 302.569 301572 300572 299580 208589 297579 296503
TC=* 25236 257271 262288 26729 272274 277242 282194
t] 7132 7181 7225 7264 73 7.333 7.363
h{%) Q= 296058 297366 298536 299569 30052 301.388 302176
TC* 243337 251343 259326 26729 275237 283169 291.089
t 7007 7095 T.181 7264 7346 7424 7.501
k(0.6) Q= 303.068 301.857 300738 2990569 298446 297254 29619
TC* 278322 274546 2T70.B6% 26720 263.8308 260423 257134
t 7079 7.143 T.205 7264 7322 7.378 7432
b(1.2) Q= 289375 292834 296243 2995809 3102.8364 306058 30927
TC* 267.037 267139 267222 26729 267343 267383 267411
t 77861 7588 7422 7264 7114 6.97 6.832
(60} Q= 278,659 285754 292711 299569 306348 3135008 319563
TC* 232366 24431 255946 26729 278355 288155 299702
ACLO0 TC* 266.04 266456 266873 26729 267.706 268.123  268.54
All 1 7252 7253 7258 7264 7273 7.284 7296
Parameters Q= 259597 273094  2B5436 299569 312565 325419 338122
TC* 209886 228396 247536 26729 287639 308569 330065
322
r(250) t1s // r(250)
ff —n(2) x5 —n(2)
g —c(4) g —c(4)
£ s
—t — —t 3}
ks h(5) 8 0 N h(5)
k(0.6) 7, 282 k(0.6)
Y iy ¥ / . i |
b ——(1.2) e —(1.2)
-20%  -10% 0% 10% 20% -20%  -10% 0% 10% 20%
% Variation in parameters=——1(60) % Variation in parameters =——1(60)
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Fig 4; Relationship between optimal values and parameters
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