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ABSTRACT 

Yarn twist has always been an integral part in textile design for its marked influence on the different aspects of 

those fabrics such as, appearance, handle and functional properties. Part of functional properties is the wicking 

ability of apparels which is an integral part in its comfort properties. Accordingly, this paper is concerned with 

the study of the effect of high twist factor yarns of crepe fabrics on vertical and horizontal wicking rates.For this 

aim, three 100% PET woven samples varying in their twists/m values (1000, 1600, 2400 TPM) for their pick 

yarns were produced, taking into account that the other production parameters were constant. Results showed 

that the increase in twist factor increased vertical wicking rates due to the progressive decrease in intra thread 

spaces. On the other hand, horizontal wicking rate was increased until a specific twist factor, after which the 

horizontal wicking rate decreased. This can be attributed to the deformation of yarns alignment which directly 

affects the inter yarn spaces. 

 

Keywords: Crepe, Wicking, High twist factor, High yarn twist, Inter yarn spaces, Intra yarn spaces. 

 

I. INTRODUCTION 

 

Yarn twist has always been an integral part in textile design for its marked influence on the different aspects of 

those fabrics such as, appearance, handle and functional properties. The different directions of twist, be it S or Z, 

can be used to obtain fabrics with stripes or checks. The generated twist effects were exploited as far back as the 

Bronze age (1200 – 1400 BCE). Moreover, the ancient Egyptians created textured fabrics with the use of highly 

twisted pick yarns which is known nowadays by the crepe fabrics
1
. The end effect of those highly twisted pick 

yarns when incorporated inside a fabric is a wrinkled or a wavy fabric
2
. High twisted yarns has been 

increasingly exploited in producing highly decorative and innovative fabrics but little emphasis has been put 

towards studying their wicking behavior as an important means of providing comfort for the wearer of such 

types of fabrics. 

Comfort can be defined as a pleasant physical, physiological and psychological equilibrium state between the 

human being and the environment, and apparel plays an important role in achieving this equilibrium. This 

equilibrium can be achieved by translating metabolic heat generated as a result of any kind of efforts exerted by 

the wearer into sweat which is equivalent to 60 to 840 ml of water vapour per hour according to the level of 

exerted effort. Accordingly there is a dire need to prevent perspiration from remaining next to the skin leading to 

body temperature regulation, improvement of muscle performance and delay exhaustion. It is worth noting that 
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when it comes to high level of activity, synthetic fabric like nylon or polyester are regarded as better performers 

when it comes to efficiently wicking moisture away from the skin of the wearer compared to fabrics made of 

natural fibers like cotton
3
. 

Accordingly, any clothing should be able toevapourate the perspiration from the skin surface and to transfer the 

moisture from the layer adjacent to the skin to the outer surface of the fabric and eventually allowing the 

moisture to evaporate in the atmosphere, this is known as moisture management, where the fabric will 

eventually dry and wearer will feel more comfortable. Mainly Capillary action, also known as wicking, is 

responsible for drawing the moisture to the outer surface of the fabric. Thus,wicking can be defined as “the 

ability to sustain capillary flow” or as “A spontaneous transport or of liquid driven into a porous system by 

capillary forces”. The two opposing forces, liquid adhesion to solid surfaces that tends to spread the liquid, and 

the cohesive surface tension force of liquids lead to the phenomenon of capillarity in porous media, as in 

textiles. From that can be concluded that this phenomenon is dependent on solid and liquid interfacial properties 

such as surface tension, contact angle, and solid surface roughness and geometry
3–7

. 

As a result, the smaller the diameter or the greater the surface energy, the greater the tendency of a liquid to 

move up the capillary. In textiles structures, narrow capillaries are readily found in the spaces between the 

fibers. Hence the wicking ability of the fabrics increase with the narrowing of the spaces between the fibers 

leading to picking up moisture effectively. Fabric constructions made from microfibers excel in wicking 

moisture due to formation of narrow capillariesdue to the dense packed arrangement of fibers constituting those 

fabrics. However, capillary action ceases when all parts of a garment are equally wet
6,7

. 

Water vapour and the liquid water are transmitted through textiles by the following mechanisms
8
: 

1) Simple diffusion through inter thread spaces: Diffusion is the main mechanism for transferring moisture that 

is controlled by the water vapour pressure gradient across the inner and outer faces of the fabric.  

2) Capillary transfer through fiber bundles: the liquid water is "Wicked" through the threads and desorbed or 

evapourated at the outer surface. That determined by the choice of thread and fabric construction which is the 

main interest of this study. 

3) Diffusion through individual fibers: This mechanism involves absorption of water vapour into the fibers at 

the inner surface of the fabric, diffusion through the fiber structure, and desorption at the outer surface.  

It is important to note that the hydrophilic or hydrophobic nature of the fibers paly a detrimental role in water 

vapour diffusion to occur in fibers
9
. 

Accordingly, the dimensions and structure of inter and intra thread pores is greatly caused by the density and 

structure of threads in woven fabrics which for example can be influenced by yarn count or method of spinning 

or doubling
3,10

.Moreover, Inter-thread pores can be similar in size to fibers and in some cases larger than 

threads. The overall complexity of fabric pore structures must therefore include the complex structural variables, 

pore size distribution, pore connectivity and total pore volume
3
. 

In our previous study, we evaluated the effect of basic fabric weaves and pick densities of synthetic PET fabrics 

on vertical and horizontal wicking rates, and their relation to fabric packing factor
3
. In the current study, the 

effect of different types of PET crepe fabrics with three different high twist factors and their relation to wicking 

rates is examined to evaluate if high twist rates impact the wicking ability of fabrics or not. 
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II. MATERIALS AND METHODS 

 

To investigate the effect high twist factors on vertical and horizontal wicking rates of fabrics, three samples 

were produced as listed in Table 1. All samples were plain 1/1 PET samples of 150 Tex. Warp and pick 

densities were the same for all samples at 28 warps/cm,and 20 picks/cm. Three levels of highly twisted pick 

yarns were used 1000, 1600, and 2400 TPM. 

All samples were tested for vertical and horizontal wicking according to AATCC test method 197-2011 for 

vertical wicking of textiles
11

and AATCC test method 198-2011 for horizontal wicking of textiles
12

. For the 

vertical wicking test the standard specifies either a 20 mm or 150 mm as a measuring distance and for this study 

the 150 mm method was adopted. Moreover, fabric shrinkage was also calculated for all samples. All results 

were tested with one way ANOVA for measuring the significance of results. 

Table 1 the specifications of test samples 

Specifications of crepe fabrics 

Sample 

no. 

Fiber type Weave 

type 

TPM Warp  

density/cm 

Pick  

density/cm 

Yarn 

count 

warp -

picks 

denier 

Shrinkage 

% 

Picks twist 

direction 

1 

PET plain1/1 

1000 

28 20 150 

3.64 

2S:2Z 2 1600 5.12 

3 2400 7.97 

 

III. MATERIALS AND METHODS 

3.1 Vertical Wicking Rates 

After analyzing the ANOVA results for vertical wicking, as listed in Annex A1, the vertical wicking resultswere 

found to be significant (F=9.689 ≥ Fcrit =5.143).From Fig. 1 it can be observed that the 1000 TPM sample 

scored the highest vertical wicking rate followed by the 1600 TPM sample. On the other hand, the 2400 TPM 

sample scored the lowest vertical wicking rate when compared to the other two samples.  

This can be explained by the fact that the mechanism of moisture transport in textiles is due the wicking of a 

liquid in capillaries which is controlled by the capillary diameter; and surface energy of the wicked material. 

And as surface energy for all samples is the same because all samples are made of PET yarns, then the 

differences can be attributed to the capillaries diameters. Capillary diameters is attributed to the structure and 

dimensions of inter and intra thread pores, which is mainly controlled by the density and structure of the threads 

in the samples themselves. And as the density for all samples is the same, then the differences in wicking rates 

can be largely attributed to the difference in structure of the pick yarns caused by the different twist rates for 

each sample type which affects both inter and intra thread pores. The high vertical wicking rate of the 1000 
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TPM sample can be explained by the abundance of both inter and intra spaces inside the threads and between 

the threads due to the low compactness of the 1000 TPM pick yarns. Accordingly, as the twist rate increases 

(1600 TPM samples) the compactness of the pick yarns increase and leads to diminished inter spaces inside the 

pick yarns. As a result the 1600 TPM sample scores less wicking rate (0.76 mm/sec) when compared to 1000 

TPM samples (0.08 mm/sec). Accordingly, 2400 TPM sample scored the lowest vertical wicking rates due to 

the high twist rate which is translated in the lowest interspaces when compared to the 1000 and 1600 TPM 

samples. 

 

Fig. 1 Vertical Wicking Rates of 1000 – 1600 – 2400 TPM samples 

 

3.2 Horizontal Wicking Rate 

After analyzing the ANOVA results for vertical wicking, as listed in Annex A2, the horizontal wicking results 

were found to be significant (F=6.685 ≥ Fcrit =5.143). As listed in Fig. 2, the 1600 TPM sample scored the 

highest horizontal wicking rate, followed by the 2400 and 1000 TPM samples respectively. The high horizontal 

wicking rate of the 1600 sample can be attributed to the less number of air spaces inside the yarns constituting 

this sample and hence the reduced availability for water molecules to be accumulated or absorbed which leads to 

greater wicking rates when compared to the 1000 TPM sample. The reduced number of available air spaces 

inside the yarn is thought to be a direct result to the effect of the high twist factor of the 1600 TPM yarns which 

leads to the production of more compact yarns when compared to the 1000 TPM yarns. Although this rational 

should dictate that the 2400 TPM sample should score the highest wicking rates among all the tested samples for 

its compact composition, but this was not the case. This can be explained by examining the shrinkage of the 

1000, 1600, 2400 TPM samples as listed in Table 1. It can be observed that the shrinkage is at its peak for the 

2400 TPM sample at 7.97%, followed by the 1600 and 1000 TPM yarns at 5.12% and 3.64% respectively. This 

high shrinkage is translated into the formation of the highly thought after wavy effect of the crepe fabrics, but at 

the same time leads to the formation of additional air pockets between the yarns due to the miss alignment of the 

yarns because of their high shrinkage rates. The additional air pockets means that there are additional sites for 
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water to be accumulated in, and hence the remaining available water for spreading is greatly reduced when 

compared to the other two samples. 

 

 

Fig. 2 horizontal wicking rates of 1000 – 1600 – 2400 TPM samples 

 

IV. CONCLUSION 

 

In this study woven crepe PET textile samples varying in their twist factor were chosen to determine the effect 

of high twist factors on horizontal and vertical wicking rates. 

After statistically analyzing the data, the results can be summarized as follows: 

1. Vertical wicking rate was found to be greatly influenced by twist factor, as with the increase of the twist 

factor the vertical wicking rate increased. This can be attributed to the fact that the increased twist rate lead 

to a more compactyarn and accordingly more narrow capillaries were created leading to higher vertical 

wicking rates. 

2. Horizontal wicking rate increased with the diminishing of both inter and intra thread spaces until a specific 

twist factor. After this point the horizontal wicking rate decreased due to the distortion in the alignment of 

yarns inside the fabric. 
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Annex A1 

Anova Single Factor for vertical wicking rate 

Horizontal wicking rates of 1000 – 1600 – 2400 TPM samples  

 SUMMARY 

     Groups Count Sum Average Variance 

  Row 1 3 0.241111 0.08037 1.37E-05 

  Row 2 3 0.229444 0.076481 1.37E-05 

  Row 3 3 0.208889 0.06963 1.03E-07 

  

       

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 0.000177 2 8.87E-05 9.689139 0.013215 5.143253 

Within Groups 5.49E-05 6 9.16E-06 

   

       Total 0.000232 8         
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Annex A2 

Anova Single Factor for horizontal wicking rate 

Horizontal wicking rates of 1000 – 1600 – 2400 TPM samples   

  SUMMARY 

     Groups Count Sum Average Variance 

  Row 1 3 11.77 3.923333 0.820633 

  Row 2 3 16.78 5.593333 0.308233 

  Row 3 3 11 3.666667 0.344433 

   

      

       ANOVA 

      Source of Variation SS df MS F P-value F crit 

Between Groups 6.566822 2 3.283411 6.68583 0.029713 5.143253 

Within Groups 2.9466 6 0.4911 

   

       Total 9.513422 8         

 


