
 

296 | P a g e  

CONTEXT-DRIVEN PROCESS ORCHESTRATION 

METHOD (CODPOM)  

Mira Kajko Mattsson 

School of Information and Communication Technology,  

KTH Royal Institute of Technology, Sweden 

 

ABSTRACT 

For years, software community has tried to find standard ways for designing optimal software development 

processes. It is however a very difficult task. Organizations, their businesses and contexts are multi-dimensional, 

diverse and very complex. Hence, using standard process models may not always be an optimal solution for all 

types of software engineering endeavors.  Instead, organizations should be able to tailor their standard 

development processes to the specific software engineering contexts. Their design should be strongly dependent on 

many aspects such as type of a software system to be developed, available resources, regulatory constraints, system 

quality to be achieved and the like.  In this paper, we suggest  Context-Driven Process Orchestration Method 

(CoDPOM), based on the concept of practice composition. Our main goal is to provide basis for future research in 

practice composition.   

 

Keywords: Activity Spaces, Practice Variant, Practice Composition, Process.  

 

I. INTRODUCTION 

 

There is no such thing as one process model fits all software development contexts. Development is too much 

diverse, multi-dimensional and multi-faceted and its methods strongly vary with respect to each individual company, 

the industrial domain to be applied in and many various reasons. The list of reasons is almost endless. To mention a 

few, software development process is dependent on financial resources, human resources, various regulatory 

constraints, stability of project requirements, supporting tools such as software and hardware tools, system quality to 

be achieved, delivery time, customer satisfaction, organizational knowledge and other reasons. [1, 2, 4] 

One of the most important reasons leading to the diversity of software  processes is the application domain of the 

system to be developed and quality goals. Development of an aircraft controller is different from development of a 

website informing about nutrition aspects of some food items. In case of the aircraft controller, a rigorous software 

process must be applied whereas a lightweight ad hoc-ish process may be satisfactory in case of the website 

development. [3, 6] 

Even within one and the same company, processes vary depending on the type of project and its size, product to be 

developed, individuals involved and available resources. Organizational size is also an important aspect herein. It is 

easier for smaller organizations to maintain the uniformity of their process. It is however very difficult for large 

multi-national organizations to upkeep uniform processes due to diverse process and business needs of their 

different business units.   



 

297 | P a g e  

Understanding the scope of the process may also vary depending on the role involved in it and the context. For one 

developer, a software process may imply following some designer’s instructions for how to code whereas for some 

other developer a process may imply all activities from specifying and analyzing requirements to designing, 

implementing and testing them. Something similar may apply to a team. For one team, a process may imply 

acquiring a product backlog and making sure that its items get implemented. For another team, it may mean 

handling both management and engineering tasks starting from gathering requirements to designing, implementing, 

testing and deploying the system. Finally, for high-level management, a process is understood as a totality of 

activities to be performed by an entire organization ranging from marketing to development, to continuous 

development, throughout maintenance to actual retirement and system replacement. For another management, a 

process may imply the same, however, in the context of a highly distributed multi-national organization.  

One of the most obvious reasons aiding to the complexity and diversity of software processes is the fact that 

modern software-based systems are not developed from scratch. They are a mix of ingredients such as newly 

developed code, COTS, open source, legacy components and the like. These ingredients must all be considered 

while designing software development processes. In addition, processes must be designed in such a way so that 

organizations may smoothly and rapidly adapt them to changing business requirements and contexts.  

The above-listed reasons to process diversity makes us realize that creating standard uniform processes within 

the organizations and forcing teams and individuals to follow them is not always the right solution. Standard 

processes may still be used, however, not as requirements for following them but as guidelines for designing 

optimal process variants that are appropriate for specific software development contexts.  

In this paper, we suggest Context-Driven Process Orchestration Method, abbreviated as CoDPOM.  CoDPOM 

addresses both managerial and engineering aspects and it is applicable within all types of organizations dealing with 

software development. It addresses process in the small and in the large. CoDPOM proposes a new way for 

designing software processes based on various project properties. It deals with  all types of processes: software 

development, software evolution and maintenance, support  processes, and various management processes [7]. 

The remainder of this paper is as follows. Section 2 describes current status within software organizations. Section 3 

presents CoDPOM method. Finally, Section 5, rounds up this paper by claiming that CoDPOM constitutes a basis 

for defining future research and industry projects.  

 

II. STATUS TODAY 

 

Companies have complex portfolios of business and engineering processes that are managed and performed by a 

complex portfolio of roles. Most of their processes are defined as organizational standards to be reused by various 

projects and roles. The standards are often complemented with guidelines to be reused in various project and non-

project related contexts. The goal is to assure that all types of organizational activities are traced back to the 

organizational standards and that they provide feedback for analyzing and improving them. 

Use of organizational standards has shown to be more difficult than expected. Instead of helping organizations have 

control over their processes, organizational standards hamper companies in adapting their work to their individual 

contexts and in drawing lessons learned from the adaptation efforts.  



 

298 | P a g e  

 

Figure 1. Aspects considered by CoDPOM 

Today, companies have many ongoing projects. They run these projects with many processes. These projects are 

supposed to follow the standard organizational process models [7]. However, due to high discrepancy between the 

project needs and the standard process model, many of the projects have created their own process variants [2], [3]. 

This may be an optimal way of maximizing project productivity at hand as long as the discrepancy is managed in a 

controlled way. However, the variant’s design should provide feedback for analyzing the organizational process 

standards and for creating process variants to be reused in the future. 

The challenge does not stop on the fact that projects define their own process variants. The danger lies in the fact 

that projects may continue creating variants of variants and so on. In the end, organizations arrive at having many 

variants and no one has control over them. This in turn creates a challenge for high-level management, the challenge 

of how to analyze various process properties in a uniform manner from a strongly diversified bulk of process 

variants. Right now, management encounters the challenge of relating the variants to the standard processes, and the 

challenge of extracting knowledge and experience from them in order to effectively reuse them in future projects. 

The existence of many process variants within organizations also creates a challenge for projects. They struggle with 

choosing the most suitable process variants and in mining and reusing knowledge and experience from them. All 

this hampers organizations from improving their processes and makes them continuously reinvent the wheel [10].  

Imposing organizational process standards has also a negative influence on individual managers and software 

engineers. Forcing them to follow standardized and homogeneous process models may sometimes have an adverse 

impact on their creativity and productivity. Many times, attempts to make processes compliant with process models 

get in the way and slow down their production pace. They also strongly impact individuals’ motivation for 

conducting their chores in their individual professional endeavors. [1]   

 

III. CoDPOM 

 

To define optimal processes is a complex task [6, 10]. Processes should guide people in what to do and how. They 

should indicate what information should be managed and whether and how it should be documented and 

measured in specific contexts. They should promote effective communication and coordination, and most 



 

299 | P a g e  

importantly, they should be convincing enough for its roles involved. We feel that CoDPOM is the right solution 

here.  It fulfills all those requirements.  

 

Figure 2. The overall structure of CoDPOM 

CoDPOM, standing for Context Dependent Process Orchestration Method, pays heed to the diversity of software 

processes. As illustrated in Fig. 1, it considers different properties of software development that have impact on the 

process design. Fig. 2 illustrates how they are organized. CoDPOM consists of the following building blocks (1) 

standard process model, (2) standard generic practice and practice variant, (2) activity spaces, and (4) 

orchestrated process.  In this section, we describe these components and the properties to be regarded when 

orchestrating software processes.  

 

3.1. Organizational Process Model 

CoDPOM suggests that all organizations should define their own standard organizational process models and 

continuously maintain them. These standard models should provide a basis for tailoring processes to specific 

contexts. As indicated in Fig. 2, a standard process model includes a set of generic practices that may be reused 

in various contexts.  

 

3.2. Activity Spaces 

Activity spaces correspond to practice containers or place holders to include a set of activities that are appropriate 

for a particular practice variant to be then included in a specific orchestrated process. Activity spaces are method 

and practice neutral. There may be various relationships between the activity spaces alias practices implying the 

inclusion of practices within other practices or a sequence or an iteration between them. This is illustrated in Fig. 3. 

As can be seen there, there is a sequence between Practice Variants 1- 4, an iteration between Practice Variants 2 



 

300 | P a g e  

and 3 and a composition of Practice Variant 4 consisting of Practice Variants 4.1 and 4.2. These practice variants 

come from the standard generic activities inherent in the organizational standard process model whose contents has 

been adapted to the specific context of a particular software engineering endeavor. 

 

Figure 3. Illustrating relationship between activity spaces and practices 

 

3.3. Practice and Practice Variants 

Specific process variants are appropriate only under certain conditions. They are a mix of a set of practices 

where a practice is a process in itself. It is difficult to define a difference between a process and practice.  Both 

of them refer to a way of working that has been developed through knowledge and experience gained when 

developing and maintaining software systems. In this paper, we define practices as core elements in creating bigger 

practices, which we herein call processes. For instance, a mix of practices for managing requirements, design, 

implementation and testing may constitute a bigger practice, software development practice or software 

development process if our reader wishes to call it so. Or, an implementation practice is a mix of pair programming 

and test-first development practices.  

As illustrated on the bottom part of Fig. 2, each practice variant is chosen according to thirteen properties. The 

contents of the majority of them are dependent on the specific context, goal and formality level of the process to be 

orchestrated. Below, we briefly describe them:   

1. Practice Name: The name of the practice that is left intact for both the standard generic practice as well as its 

variants.  

2. Practice Variant ID: The identifier of a specific practice variant. It is not enough to have a practice name. One 

practice may have many practice variants and they all need to be distinguished.  

3. Formality level: The level of the formality of the practice. Here, CoDPOM does not impose any levels. 

Organizations are free to choose their own levels. In the least, CoDPOM suggests low, medium and high 

formality levels. These formality levels are determinants on the choice of the contents of the properties such as  

choice of activities to be included in the practice, subset of information to be managed when performing the 

practice, choice of roles to conduct the practice, choice of process and product aspects to be measured and 

determination of documentation needs.  

4. Goal: The goal with the practice variant. For instance, the goal might be to unit test code.  

5. Context: A set of circumstances that apply to the practice. Here, CoDPOM again leaves the floor open for 

choosing the parameters defining the practice context. An example of a context may be that a practice is 



 

301 | P a g e  

conducted in pre-determined process phases. For instance, the inspection practice is conducted after 

requirements gathering, design and implementation.  

6. Process: The process, or bigger practice, in which this practice is included.  

7. Activities: Activities to be part of the practice variant. For instance, a low formality level practice variant 

dealing with unit testing may include the following activities: (1) choose code to be tested, (2) test code in an 

ad hoc manner. A medium  

 

Figure 4. Exemplifying generic practice and its variants. Activities are retrieved from CM
3
: 

Problem Management [9] 

formality level practice might include the following activities: (1) choose software component to be tested, (2) write 

test cases for the software component, (3) test code against the use cases, (4) document test results.  



 

302 | P a g e  

8. Information managed: A set of information to be managed while performing the practice. For instance, within 

medium  formality level unit testing  practice, the information to be managed might be (1) Software Component 

ID, (2) Software Test ID, (3) Input, (4) Output, and (5) Testing Result.  

 

Figure 5. A tentative illustration of a process instance 

9. Rules and recommendations: Policies and strategies for creating the practice. For instance, they may include 

advise to developers how to identify and use process patterns that work or a rule that each software 

component is to be separately tested first before it is tested with other components.   

10. Measurement: A set of measures to be used within the practices. In the least, a practice may include no 

measurement at all. For instance, in one context a developer might perform unit testing, however, he may not 

measure anything. In his specific context and formality level, the organization may not require this from him.  

11. Documentation needs: A specification of what needs to be documented. This may apply to documentation of 

what activities have been performed, what measurement has been done, what rules and recommendations have 

been applied, and the like. In the least, no documentation may be needed.  

12. Lessons Learned: Experience reporting on knowledge, feedback or skills gained while being involved in or 

exposed to the practice. The practice user describes whether or not and why the practice worked, and 

generously shares the lessons learned from his/her experience as engineer, manager, consultant, or some 

other role.  

13. Role(s) and Expertise: Expertise and roles required for performing the practice. In some cases, a practice may 

be conducted by anybody, such as for instance, a simple unit testing may be delegated to a software engineering 

student. His role would be to run software units and compare expected and achieved testing outputs. In other 



 

303 | P a g e  

cases, testing has to be conducted by an expert who while testing must understand the testing context and output 

and use it for specifying the next tests.  

 

3.4. Process Orchestration 

The main process instance, the one that has been orchestrated, is also put into an activity space.  It is realized by 

combining (orchestrating) existing software practices  that are placed in their own activity spaces [5]. It is created on 

an as-needed and context-driven basis. Depending on the context at hand and formality requirements, the 

orchestration may result in heavyweight, mediumweight or lightweight process instances or a mixture of those.  

To orchestrate processes is not simple. To make them as optimal as possible, we suggest that the input to the process 

of orchestrating a specific process instance be (1) standard organizational process models that are local standards 

within each organization and (2) CoDPOM suggested herein. The local organizational standards should include a 

set of generic practices that may provide a basis for creating practice variants to be then included in the orchestrated 

process model.  

When orchestrating processes, organizations should feel free to decide when to bind their practices. Both early and 

late bindings should be allowed. Late bindings are recommended in contexts dealing with many uncertainties and 

unknowns. Early bindings,  on the other hand, may be conducted in obvious process cases. However, they should  

be easily unbound and rebound in cases when the process context changes. The reasons may be many. For instance, 

customer may have losen the quality requirements, and therefore, the process required for developing the system 

may be less formal. Being such a case, some more formal practice variants will have to be unbound and replaced by 

the less formal ones.  

To orchestrate processes is not easy bearing in mind the fact that processes may comprise a great number of 

practices, they may need to follow specific organizational strategies and policies, they may have to consider the 

context and changes within it and they may have to adhere to specific formality levels. In order to obtain processes 

that are suitable for specific contexts and needs, the organizations should compose processes by extracting and 

assembling practices. 

To maximize process results and to minimize process missteps, waste and failures, organizations need information 

supporting them in their process orchestration work. Such information is briefly presented on the right hand side of 

Fig. 2. It includes different properties whose contents, just as with practices, is driven by Context and Formality 

Level. The properties are the following:    

1. Process Name: The name of a process, for instance, software development. 

2. Process Variant ID: The identification of the composed software process variant. The identifier is very 

important in order to retrieve the instance of the process variant in cases one needs to analyze it, draw lessons 

learned and make suggestions for process improvement.  

14.  Formality level: The level of the formality of the process. Just as with the formality levels of practices, 

CoDPOM does not impose any levels.  Organizations are free to choose their own levels. In the least, 

CoDPOM suggests low, medium and high formality levels.  

 Goal:  The goal with the process variant. For instance, the goal might be to develop a university administration 

application to be used by Swedish universities.  



 

304 | P a g e  

3. Context: A set of circumstances that apply to the process.  Just as with the practice context, CoDPOM leaves 

the floor open for choosing the parameters defining the practice context. An example of a process context may 

be that the process is distributed across several nodes in the world such as India, Sweden, USA and Brazil.  

4. Choice of practices: List of practices and their variants that have been chosen for orchestrating the process at 

hand.  

5. Order of practices: A map of the order of activities that are included in the process.  

6. Rules and recommendations: Policies, strategies and advice for orchestrating processes. They must adhere to 

the rules and recommendations of each individual practice that is part of the process.  

7. Measurement: A set of measures to be used within the process. Here, the measures may include both measures 

for each practice involved and combined measures applying across the whole process.   

8. Documentation needs: Specification of what needs to be documented. Just as with measures, documentation 

may apply to documentation of each individual inherent practice as well as documentation of the whole process.  

9.  Lessons Learned: Experience gained from using the orchestrated process instance.  

10.  Roles & Expertise: Expertise and roles required for performing the process. In contrast to roles and expertise 

required for performing the practice, roles and expertise for the process may strongly vary. Many roles may be 

involved and the expertise needs may be on different levels.  

11.  Process Orchestration Guidelines: Guidelines for how to combine practices.  

 

IV. EPILOGUE 

 

It is difficult to find a universal way for choosing the right processes for the right contexts and formality levels. In 

this paper, we have suggested Context-Driven Process Orchestration Method (CoDPOM).  CoDPOM addresses 

both managerial and engineering aspects and it is applicable within all types of organizations that are involved in 

software development, software evolution and maintenance,  support  processes, and various management processes 

[7]. CoDPOM considers many properties while designing software processes and adapting them to specific software 

engineering endeavors.  

Right now, CoDPOM has only been suggested as a research idea and it has not been implemented yet. However, we 

regard CoDPOM as a realistic solution for relaxing the rigidness of current software engineering processes. Hence, 

we strongly suggest to the software community to use it as a guideline for defining future research and industry 

projects, and hopefully, for arriving at an optimal process orchestration method.  

 

REFERENCES 

 

[1] S.W. Baker, Formalizing Agility, Part 2: How an Agile Organization Embraced the CMMI, Proc. AGILE 

Conference, 2006, IEEE Computer Society, 147-154.  

[2] M. Beck,  Managing Process Diversity while Improving Your Practices, IEEE Software, IEEE Computer 

Society, Vol. 18, Issue 3, 2001, 21-27. 

[3] T. Bollinger,  C. McGowan, A Critical Look at Software Capability Evaluations: An Update, IEEE 

Software, IEEE Computer Society, Vol. 26, Issue 5, 2009, 80-83.  



 

305 | P a g e  

[4] Carnegie Melon and SEI, Capability Maturity Model Integration (CMMI), http://www.sei.cmu.edu/ 

/tools/index.cfm, retrieved on January 6, 2017.  

[5] A. Cockburn, Methodology Per Project, http://alistair.cockburn.us/Methodology+per+project, retrieved 

on January 8, 2016.  

[6] S. Henninger, Software Process as a Means to Support Learning Software Organizations, Proc. Twenty-

fifth Annual NASA Software Engineering Workshop, 1995. 

[7] ISO/IEC 12207: 2008, Systems and Software Engineering - Software life cycle processes, 2008. 

[8] M. Kajko-Mattsson, K. Sjökvist Söderström, DRiMaP - A Model of Distributed Risk Management 

Process, Proc. Fifth International Joint Conference on INC, IMS and IDC, ISBN: 978-1-4244-5209-5, 

IEEE, 2009. 

[9] M. Kajko-Mattsson, M, Corrective Maintenance Maturity Model: Problem Management, PhD thesis, 

ISBN Nr 91-7265-311-6, ISSN 1101-8526, ISRN SU-KTH/DSV/R--01/15, Department of Computer and 

Systems Sciences (DSV), Stockholm University and Royal Institute of Technology, 2001. 

[10] J. Nyfjord, M. Kajko-Mattsson, D. Wengelin, Exemplary System Development Framework Needed! 

Position Paper, http://www.semat.org/pub/Main/WorkshopPositions/SEMAT_position_SAAB.pdf, 

retrieved on January 6, 2016.  


