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Abstract:

Hyperbolic space groups are isometric groups, acting discontinuously on the hyperbolic 3-space with compact
fundamental domain. One possibility to classify them is to look for fundamental domains of these groups. Here are
considered super groups for four series of groups with simplified fundamental domains. Considered simplices, denoted
in [9] by T9, T4s, Tse, belong to family F12, while T3, belongs to F27.

1. Introduction

Hyperbolic space groups are isometric groups, acting discontinuously on the hyperbolic 3-space with compact
fundamental domain. One possibility to classify them is to look for fundamental domains of these groups. Face pairing
identifications of a given polyhedron give us generators and relations for a space group by Poincare Theorem [1], [3], [7].

The simplest fundamental domains are simplices and truncated simplices by polar planes of vertices when they
lie out of the absolute. There are 64 combinatorial different face pairings of fundamental simplices [16], [6], furthermore
35 solid transitive non-fundamental simplex identifications [6]. I. K. Zhuk [16] has classified Euclidean and hyperbolic
fundamental simplices of nite volume up to congruence. Some completing cases are discussed in [2], [5], [10], [12], [13],
[14], [15]. Algorithmic procedure is given by E. Molnar and I. Prok [5]. In [6], [8] and [9] the authors summarize all these
results, arranging identified simplices into 32 families. Each of them is characterized by the so-called maximal series of
simplex tiling's. Besides spherical, Euclidean, hyperbolic realizations there exist also other metric realizations in 3-
dimensional simply connected homogeneous Riemannian spaces, moreover, metrically non-realizable topological simplex
tiling's occur as well [4].

When vertices are out of the absolute, the simplex is not compact and then we truncate it with polar planes of the
vertices. The new compact polyhedron obtained in that way, let us call it trunc-simplex, is fundamental domain of some
larger group. It has new triangular faces whose pairing gives new generators. For simplicity, here we require that the new
pairing generators keep the original simplicial face structure. Other possibilities will be discussed elsewhere. Dihedral
angles around new edges are ¥%=2. That means that there will be four congruent polyhedra around them in a new
fundamental space " ling. These investigations have been initiated by the author (see e.g. [14]).

Each identified simplex, considered in this paper, has two equivalence classes for edges with three edges in each.
Edges in the same class haven't common vertex. There are 4 deferent face pairings: Tig, Tas, Tsg in family F12 and T, in

family F27 to investigate in this paper to extend the series tabled in [9].

In Section 2 we recall Poincare Theorem which provides a method to construct discontinuously acting isometric groups.
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In Section 3 we discuss the super groups with trunc simplices as fundamental domains, for each simplex series separately

(see Figures 1, 6, 8, 10). Since all considered simplices have the same inner symmetry, namely a half-turn about axis line
h in Figure 5, this also gives a possibility to consider super groups by this property. This interesting phenomenon occurs at
the rest three series, but not at Ta;.

2. Construction of discontinuously acting isometric groups
Generators and relations for a space group G with a given polyhedron P (a simplex or a trunc simplex in the
considered cases) as a fundamental domain can be obtained by the Poincare theorem. It is necessary to consider all face
pairing identifications of such domains. Those will be isometries, which generate an isometry group G and induce
subdivision of vertices and oriented edge segments of P into equivalence classes, such that an edge segment does not
contain two G-equivalent points in its interior.
Face pairing identifications are isometries satisfying conditions (a){(c). They generate an isometry group G of a space
of constant curvature.
(a) For each face fyi1 of P there is another face fy and identifying isometry g which maps fg4j1 onto f, and P onto P
9, the neighbor of P along f,.
(b) The isometry g'* maps the face f, onto f;i1 and P onto P %", joining the simplex P along fgi1 .
(c) Each edge segment e; from any equivalence class (dened below) is successively surrounded by polyhedra P
Pt pegitegit o p onit=enilegil \which will an angular region of measure 2v,=°, with a natural number °.
An equivalence class consisting of edge segments ey, e,, . . ., e, with dihedral angles "(ey), "(e2), . . ., "(&r),
respectively, is dened as follows.

Let us consider an edge segment, say e1, and choose one of the two faces denoted by fg]_il whose boundary contains e;.

The isometry g; maps e; and fy i1 onto e, and fy , respectively. There exists exactly one other face fy,il with e, on its

boundary, furthermore the isometry g, mapping e, and fy,j1 onto e; and fg, , respectively, and so on. We obtain a cycle of

isometries g1, 0,; : & :; gr according to the scheme
3 . 3 ’ 3
i
(2.1) e;f1 19 (e f Yie;fil 19(e;f Yiiiref o 19 (e f )
191 2 g1 2 Q2 3 02 rgr 1 or
where the symbols are not necessarily distinct. More precisely, we have two essentially different

cases for the scheme (1).

1: if a plane reaction m; = g; occurs then e;,; = €;, and we turn back to e, then, say, e;; comes. Furthermore, another
plane reaction m; = g;; shall appear in the cycle. Then each edge segment comes two times in the scheme (1), and
the cycle transformation is of the form

il il
3737C=010p 110G = 00l gigmigi; 191
giillgiijl+1mijgij+lgil

2: there is no plane reaction in the cycle; this will be the simpler case. (In dimension 3 we have 5 sub cases for the
edges at all [3]).
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In other words the segment e, is successively surrounded by polyhedral

pp 01 p 020" . p 0hig, gyt which will an angular region of measure 2v4=°. In the above case 1. the following
holds
(2.2) "(el) + ¢¢¢ + "(ei) + "(ejl) + ¢C¢ + "(ej1+j) = Y4=°: In case 2. we have
(2.3) "(ey) + ¢¢¢ + "(e,) = 2¥4=0: Finally, the cycle transformation ¢ = 9,0, : : : g, belonging to the edge segment
class fe,q is a rotation, say, of order °. Thus we have the cycle relation in both cases (2.4) (919, : : : @) = 1:

Throughout in this paper we shall apply the specified Poincare theorem;

Theorem 2.1. Let P be a polyhedron in a space S* of constant curvature and G be the group generated by the face
identifications, satisfying conditions (a){(c). Then G is a discontinuously acting group on S, P is a fundamental
domain for G and the cycle relations of type (2:4) for every equivalence class of edge segments form a complete set

of relations for G, if we also add the relations g; = 1 to the occasional involutive generators g; = g;'*.

3. Isometry groups of simplices and their super groups

3.1. SIMPLEXT19

Face pairing isometries for simplex Ty (6a; 6b) (Figure 1) are

AALA2 A3 A A0 A2 A3 A A0 Al A3 A AOAL A2
lo: A3A2 A1 .1 A2 A0 A3 b.rp: A3 AL A0 !.r3: AOA2 Al .
Relations for the isometry group are obtained by Theorem 2.1 and the presentation
is i(Tio; 6a; 6b) =(ro; ry; r2; 3 i o 2= f=rf=n 2= (ForiFalafors)* = (afafoharary)” = 1; a; b 2 N):

Considering vertex figures on a symbolic 2-dimensional surface (plane) around the vertices, we can glue a
fundamental domain for the stabilizer subgroup, e.g. j(A,) of vertex A,. Transformation r; maps vertex A, onto A
and Ta, onto Ta™, . That means that Ta, and TA™, have a joint edge corresponding to the joint face f,; of simplex T .
Similarly, vertex figures T, and TA™; have joint edge corresponding to .5 , and TA"; and TA%;" to (fo ) . One

fundamental domain for j(A,) (Figure 2) is Pas := Tao [ Taz [ Ta™1 [ Ta%"

Figure 1. The simplex Tyg
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Figure 2. The fundamental domain P, for ja, and the generators for j(A,), obtained from P, , are rarorory : (fo )2 1 (. )™
oo U g rarars  (Fig )™ U (Fa )™ 5 rarars s (Fi )® ! (Fi2 )™ 5 (raro)ra(rors) = (Fia )™ 1 (Fy )™ :

In the diagram for P, the minus sign in notations a', b’ means that edges in these classes are directed to the
considered vertex, (the plus sign in diagram means the opposite direction).

When parameters a, b are large enough, namely 1=a + 1=b < 2, by angle sum criterion for P, , then simplex T is
hyperbolic with the vertices out of the absolute [9]. Then it is possible to truncate the simplex by polar planes of these
vertices. In such a way we get a compact trunc simplex (with 8 faces) denoted by O;9(6a; 6b). If we equip O;9 With
additional face pairing isometries, it will be a fundamental domain for a group j;(O,; 6a; 6b) which will be a super group
of j(T1e; 6a; 6b). We require, also later on, that the new generators keep the original simplex face structure. A trivial group
extension with plane rejections m, i = 0; 1; 2; 3, in polar planes of the outer vertices A; is always possible (Figure 3).
Then the new group, by Theorem 2.1 is j1(O1o; 6a; 6b) =(ro; I+ Iz I3, Mo, ML By Mg | Fo? = M2 = 1,2 = 132 = W% = M5 = M5
= w3 = (FoMMarifors)® = (alafofalafy)’ = Mglaols = MM, = MoloRoly = Mialfaly = MgloMsly = AyTals = Mgl #ly =

oy = 1):

Figure 3. The trunc simplex 049" With trivial group extension

There is a further possibility to equip the new triangular faces with face pairing isometries (Figure 4). New
additional face pairings of Oy have to satisfy the follow-ing criteria. Polar plane of A, and so stabilizer j(A,) will be
invariant under these new transformations, Xing A,, and exchanging the half spaces obtained by the polar plane. Thus,
fundamental domain P, is divided into two parts, and the new stabilizer of the polar plane will be a super group for j(A»),
namely of index two. Inner symmetries of the P, -tiling give us the idea how to introduce a new generators. Let g be the
glide refection as a composition of the translation in the plane of the vertex Figure with a rejection in this plane. Then g
maps the vertex Figure T, onto Ta"%"™
and T rors onto T ryfrers , equivalentto T A . Then g also maps T rp ontoTrpandT r; ontoT ryrers

A3 A2 2 A0 Al Al A0
equivalentto T ry . Inthat case the new generators for j O ; 6a; 6b) willbeg andg =r gr inFigure 4,
A0 2 19 1 2 1 10
while the new group, by Theorem 2.1 is j»(O1g; 6a; 6b) = (ro; I1; 12, I3, G1; Uz i Fo” = I1° = I2° = rg” = (Fol1Fafifors)® =

b_ i _ . il — 1y
(rararolarsra)” = raQifa0:™ = Qaf3Qalz = GaloQ' 11 = rogar192" = 1):

The Pa; -tiling in the polar plane of A, do not allow other identifications on the truncated simplex Oqq.
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Figure 4. The trunc simplex O1° with non-trivial group extension

Fundamental domains T19 and 019J (j = 1; 2) above, allow to divide them to smaller polyhedra, equipped with face

pairing identifications. Namely, there is a half-turn h Al . %0 1 #2 #3 A1 0 A3 #2 leaving invariant the tessellations of

space with Tyg Or 0,¢, s0 groups i(T1g; 6a; 6b) and j;(O1; 6a;6b) are not maximal. The authomorphism groups 22i6(3u; 3v)

of their tilings ([8], [9]) have domains which are fundamental polyhedra of piecewise linear bent faces. That domains are

obtained by identifying equivalent points, under sym-metry h, of simplex T19 (Figure 5), and consequently also each trunc
simplex O,¢' above (j = 1; 2). Since r3 = hr;h and r; = hrgh, presented for a 6= b, maximal groups are now (with u = 2a and
v =2b for the rotational parameters) by %is(3u; 3v) =(h: ro; Iy i h? = re> = 1,2 = (rohrohroh)Y = (hrare)Y = 1; u = 2a; v = 2b)

and i(Q; 3u; 3v) = (h; ro; I; ;R | P = 102 = 12 = my = % = (rohrohrsh)! = (1hrarg)Y = AT, = MolgPly = APl

=Myl = 1; u=2a; v =2b):

Figure 5. The fundamental domain of supergroup %is(3u; 3v)

If a = b then simplex T and trunc simplex O’ have more symmetries. Then the maximal supergroup for j(T1o; 6a; 6b) is

a Coxeter group, by [9], while the maximal supergroup for j;(O1; 6a; 6b) might have only the trivial extension, so it is

also a Coxeter group.
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A A A
A A A Ao A A 17273

r: A A Al A0 !.rp:P a0 A Al ' s A
and the tiling group is

i(Tas; 6; 3D) = (r; 13; S j 122 = 1g® = (5°,87rs)* = (rsr3)° = 1; a; b 2 N):

1

A2 A3 A0 °;

One fundamental domain for the stabilizer group j(A,) of the vertex A, (Figure 6) is Pa, := TA% ™ [ Ta¥s! [ Taz [ Ta™
and the generators are then sr2r3r2si : (fr3 ) 1 (fr3 )& : s%r2s™ : (Fs™)5 1 (f5)21L : a5 1 (il )® 1 fs; rarars s (F2)° ! (Fr
)" : The stabilizer j(A,) of Pa, above is hyperbolic i® (again by the angle sum criterion for P, ) 2=b + 1=a < 2. Then

truncating the simplex by polar planes of the vertices,

Figure 6. The simplex T, and the fundamental domain P,

a new trunc-simplex O4s may have plane rejections as face pairing isometries of the new faces. In this case the new group
is (Figure 7)

(O R 2R =(rr e mm M m r2—r2—m2 —m2 —m2 — 2 — (clr cilp \a —

i1(Os6; 6a; 3b) =(rz; 3; S; Pg; My, Ay Mg | 1" = 13" =M = M = M = M5 = (ST87Tg)" =

(r2SF3)° = P3Py = PP, = MghMsly = Alsfols = ApSAALS™T = WSS = MySA,S'™ = 1):

Figure 7. The trunc-simplex Ogg
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Other possibility, by symmetries of the fundamental domain P, is the group ex-tended by the point rejection z,
indicated in Figure 6. This point rejection rejection z (say) maps the triangle of A, to that of A%;™ and triangle of A";® to
that of A'y™™ in P, (Figure 6). Thus, the above z induces new generators g; and g, as glide rejections, pairing the
truncations at A,, Az and those at Ay, Ay, respectively.
i2(Oug; 63; 3b) =(r2; 133 S; G1; G2 i T2” = Fs” = (5°158"°r)" = (15r3)° = raGorago™ = Gala0y''fs = 50150," = gas''gus™ = 1):

If ro and h are similarly introduced, as in the previous section, so that r; = hr,h and s = rgh hold. Then the maximal group
%,is(3u; 3v), now with u = 2a, v = b, will be supergroup of j(T; 6a; 3b), and (Q; 3u; 3v) extends ij(Ous; 63; 3b) (j = 1; 2) as

well.

3.3. SIMPLEX T
In the case of the simplex Tso(3a; 3b) the face pairing identifications are (Figure 8)
Al A2 A3 A0 Al A3

s A A A A 5 A A2 A0 AL !

and the presentation of the group is

i(Tse; 32; 3b) = (51,52 i (5 I I MP=1;a,b2N):
The stabilizer group j(Ao) has fundamental domain (Figure 8)
s sil
2 Sy 2

PAO:=TA3 [TA 1[TA0 [TA2

and the generators

2 s 1 1 s 1 2 §il s
(fsl) :(fsil)
s, sl :(fjl)? fs,; s, S1%2 ((fil) 2 2 : s2s1s2 2 (f1) %
1 ! 1 ! 1 !

Figure 8. The simplex Tsg and the fundamental domain P g

There are two possibilities for the isometry group with trunc-simplex Osg as a fundamental domain, i® 1=a + 1=b < 1.

In the trivial case, group is (Figure 9)
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Figure 9. The trunc-simplex Osg

i1(Oso; 3a; 3b) =(s1; So; Fo; My} Py Mg | A’ = M7y = M7y = Ay = (5715,)" = (5%511")° = S 1ss’s ' = PRgsy oS’y = Pys sy’ =
S, S,Y = MRS S, = MoSLs'y) = 1):
Taking g; and g, = s',’g,5%," as a new generators, other possibility for the group is j»(Ose; 3a; 3b) =(S1; S2; G1; Gz i (5%4S2)°
= (Szzsill)b = 01810251 = 01520152 = $2025:01"" = go8'4'08', " = 1):
Since, it is possible to express the face pairing isometries s; and s, of Tsg by h, ro, r2: S; = rgh and s, = r,h, the groups

%,is(3u; 3v) and j(Q; 3u; 3v) are super groups of the groups (Tse; 3a; 3b) and ij(Osg; 3a; 3b), (u=a; v=h).

3.4. SIMPLEX Ty,
The face pairings identifications for the simplex T3;(6a; 12b) are (Figure 10)

AA A Ay Ay A A A A

m:AA A A Lo AA, Ay A LostAAL A A
The group presentation is j(Ts.; 6a; 12b) =(m: r; s j r* = m? = (rmrsi'ms)® = (rs’ms'*rs’ms®®)® = 1: a, 1; b, 1): For the stabilizer

group i(A,) one of the fundamental domains is (Figure 10) Pa; := Ta% [ Ta%o [ Tar [ Ta%3*

Figure 10. The simplex T3; and the fundamental domain P,; with generators

sst(F LT shrs:(f)” 1(f)"

r r r r

After truncating the simplex by the polar planes of the vertices, i® 1=b + 1=a < 4 trunc simplex O3; may have only trivial

group extension (Figure 11)
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i(Os; 6a; 12b) =(m; r; s i r? = m? = (rmrs™ms)® = (rs’ms?rs’ms®)® = mgrgl = MolM,r = MMM = M,mm,m =

FAsMMM = MSALST = AL,SMes’” = mesms™ = 1;a, 1; b | 1):

Figure 11. The trunc-simplex Os;

It is not possible to extend generators of Ta; by h, since then a new rejection plane on halfturn axis r would yield a =b

and we got the richer family F.1.
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