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Abstract: 

Hyperbolic space groups are isometric groups, acting discontinuously on the hyperbolic 3-space with compact 

fundamental domain. One possibility to classify them is to look for fundamental domains of these groups. Here are 

considered super groups for four series of groups with simplified fundamental domains. Considered simplices, denoted 

in [9] by T19, T46, T59, belong to family F12, while T31 belongs to F27. 

 

1. Introduction 

Hyperbolic space groups are isometric groups, acting discontinuously on the hyperbolic 3-space with compact 

fundamental domain. One possibility to classify them is to look for fundamental domains of these groups. Face pairing 

identifications of a given polyhedron give us generators and relations for a space group by Poincare Theorem [1], [3], [7]. 

The simplest fundamental domains are simplices and truncated simplices by polar planes of vertices when they 

lie out of the absolute. There are 64 combinatorial different face pairings of fundamental simplices [16], [6], furthermore 

35 solid transitive non-fundamental simplex identifications [6]. I. K. Zhuk [16] has classified Euclidean and hyperbolic 

fundamental simplices of nite volume up to congruence. Some completing cases are discussed in [2], [5], [10], [12], [13], 

[14], [15]. Algorithmic procedure is given by E. Molnar and I. Prok [5]. In [6], [8] and [9] the authors summarize all these 

results, arranging identified simplices into 32 families. Each of them is characterized by the so-called maximal series of 

simplex tiling's. Besides spherical, Euclidean, hyperbolic realizations there exist also other metric realizations in 3-

dimensional simply connected homogeneous Riemannian spaces, moreover, metrically non-realizable topological simplex 

tiling's occur as well [4]. 

When vertices are out of the absolute, the simplex is not compact and then we truncate it with polar planes of the 

vertices. The new compact polyhedron obtained in that way, let us call it trunc-simplex, is fundamental domain of some 

larger group. It has new triangular faces whose pairing gives new generators. For simplicity, here we require that the new 

pairing generators keep the original simplicial face structure. Other possibilities will be discussed elsewhere. Dihedral 

angles around new edges are ¼=2. That means that there will be four congruent polyhedra around them in a new 

fundamental space ¯ling. These investigations have been initiated by the author (see e.g. [14]). 

Each identified simplex, considered in this paper, has two equivalence classes for edges with three edges in each. 

Edges in the same class haven't common vertex. There are 4 deferent face pairings: T19, T46, T59 in family F12 and T31 in 

family F27 to investigate in this paper to extend the series tabled in [9]. 

 

In Section 2 we recall Poincare Theorem which provides a method to construct discontinuously acting isometric groups.  
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In Section 3 we discuss the super groups with trunc simplices as fundamental domains, for each simplex series separately 

(see Figures 1, 6, 8, 10). Since all considered simplices have the same inner symmetry, namely a half-turn about axis line 

h in Figure 5, this also gives a possibility to consider super groups by this property. This interesting phenomenon occurs at 

the rest three series, but not at T31. 

 

2. Construction of discontinuously acting isometric groups 

Generators and relations for a space group G with a given polyhedron P (a simplex or a trunc simplex in the 

considered cases) as a fundamental domain can be obtained by the Poincare theorem. It is necessary to consider all face 

pairing identifications of such domains. Those will be isometries, which generate an isometry group G and induce 

subdivision of vertices and oriented edge segments of P into equivalence classes, such that an edge segment does not 

contain two G-equivalent points in its interior. 

Face pairing identifications are isometries satisfying conditions (a){(c). They generate an isometry group G of a space 

of constant curvature. 

(a) For each face fg¡1 of P there is another face fg and identifying isometry g which maps fg¡1 onto fg and P onto P 

g
, the neighbor of P along fg.  

(b) The isometry g
¡1

 maps the face fg onto fg¡1  and P onto P 
g¡1

 , joining the simplex P along fg¡1  .  

(c) Each edge segment e1 from any equivalence class (dened below) is successively surrounded by polyhedra P  

, P 
g
1

¡1
 , P 

g
2

¡1g
1

¡1
 , . . . , P 

gr¡1:::g
2

¡1g
1

¡1
 , which will an angular region of measure 2¼=º, with a natural number º. 

An equivalence class consisting of edge segments e1, e2, . . . , er with dihedral angles "(e1), "(e2), . . . , "(er), 

respectively, is dened as follows. 

Let us consider an edge segment, say e1, and choose one of the two faces denoted by fg1¡1 whose boundary contains e1. 

The isometry g1 maps e1 and fg1¡1 onto e2 and fg1 , respectively. There exists exactly one other face fg2¡1 with e2 on its 

boundary, furthermore the isometry g2 mapping e2 and fg2¡1 onto e3 and fg2 , respectively, and so on. We obtain a cycle of 

isometries g1, g2; : : : ; gr according to the scheme 

 ³  ´  ³  ´  ³  ´      

(2.1) e ; f 

¡

1 !
g1

 (e ; f 

g1 

) ; e ; f ¡1 !
g2

 (e ; f 

g2 

) ; : : : ; e ; f 

gr 

¡1!
gr

 (e 

1 

; f 

gr 

)  

 1   g1  2 2   g2  3 r     

where the symbols are not necessarily distinct. More precisely, we have  two essentially different  

cases for the scheme (1). 

1: if a plane reaction mi = gi occurs then ei+1 = ei, and we turn back to e1, then, say, e¡1 comes. Furthermore, another 

plane reaction m¡j = g¡j shall appear in the cycle. Then each edge segment comes two times in the scheme (1), and 

the cycle transformation is of the form  

¡ 1 ¡1 

³ ´ ³ ´ c = g1g2 : : : gr = g1 : : : gi¡1migi ¡ 1
g
1 

 g¡
¡
1
1
g¡

¡
j
1
+1m¡jg¡j+1g¡1 

2: there is no plane reaction in the cycle; this will be the simpler case. (In dimension 3 we have 5 sub cases for the 

edges at all [3]).  
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In other words the segment e1 is successively surrounded by polyhedral 

P; P g1
¡1

 ; P g2
¡1

g1
¡1

 ; : : : ; P gr
¡1

:::g2
¡1

g1
¡1

 which will an angular region of measure 2¼=º. In the above case 1. the following 

holds 

(2.2) "(e1) + ¢¢¢ + "(ei) + "(e¡1) + ¢¢¢ + "(e¡1+j) = ¼=º: In case 2. we have 

(2.3)  "(e1) + ¢¢¢ + "(er) = 2¼=º: Finally, the cycle transformation c = g1g2 : : : gr belonging to the edge segment 

class fe1g is a rotation, say, of order º. Thus we have the cycle relation in both cases (2.4) (g1g2 : : : gr)
º
 = 1: 

Throughout in this paper we shall apply the specified Poincare theorem: 

Theorem 2.1. Let P be a polyhedron in a space S
3
 of constant curvature and G be the group generated by the face 

identifications, satisfying conditions (a){(c). Then G is a discontinuously acting group on S
3
, P is a fundamental 

domain for G and the cycle relations of type (2:4) for every equivalence class of edge segments form a complete set 

of relations for G, if we also add the relations gi
2
 = 1 to the occasional involutive generators gi = gi

¡1
. 

 

3. Isometry groups of simplices and their super groups  

3.1. SIMPLEX T19  

 Face pairing isometries for simplex T19 (6a; 6b) (Figure 1) are       

r0 : 

Ã A1 A2 A3 

! ; r1 : 

Ã A0 A2 A3 

! ; r2 : 

Ã A0 A1 A3 

! ; r3 : 

Ã A0 A1 A2 

! : 

 

A3 A2 A1 A2 A0 A3  A3 A1 A0 A0 A2 A1  

Relations for the isometry group are obtained by Theorem 2.1 and the presentation      

is ¡(T19; 6a; 6b) =(r0; r1; r2; r3 ¡ r0 
2
 = r1 

2
 = r2 

2
 = r3 

2
 = (r0r1r2r1r0r3)

a
 = (r3r2r0r2r3r1)

b
 = 1; a; b 2 N):  

 

Considering vertex figures on a symbolic 2-dimensional surface (plane) around the vertices, we can glue a 

fundamental domain for the stabilizer subgroup, e.g. ¡(A2) of vertex A2. Transformation r1 maps vertex A2 onto A0 

and TA2 onto TA
r1

0 . That means that TA2 and TA
r1

0 have a joint edge corresponding to the joint face fr1 of simplex T . 

Similarly, vertex figures TA2 and TA
r3

1 have joint edge corresponding to fr3 , and TA
r3

1 and TA
r0

3
r3

 to (fr0 )
r3

 . One 

fundamental domain for ¡(A2) (Figure 2) is PA2 := TA
r1

0 [ TA2 [ TA
r3

1 [ TA
r0

3
r3

 

 

 

 

Figure 1. The simplex T19 
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Figure 2. The fundamental domain PA2 for ¡A2 and the generators for ¡(A2), obtained from PA2 , are r3r0r2r1 : (fr2 )
r0r3

 ! (fr2 )
r1

 

; r0 : fr0 ! fr0 ; r1r3r1 : (fr3 )
r1

 ! (fr3 )
r1

 ; r3r2r3 : (fr2 )
r3

 ! (fr2 )
r3

 ; (r3r0)r1(r0r3) : (fr1 )
r0r3

 ! (fr1 )
r0r3

 : 

In the diagram for PA2 the minus sign in notations a
¡
, b

¡
 means that edges in these classes are directed to the 

considered vertex, (the plus sign in diagram means the opposite direction). 

When parameters a, b are large enough, namely 1=a + 1=b < 2, by angle sum criterion for PA2 , then simplex T is 

hyperbolic with the vertices out of the absolute [9]. Then it is possible to truncate the simplex by polar planes of these 

vertices. In such a way we get a compact trunc simplex (with 8 faces) denoted by O19(6a; 6b). If we equip O19 with 

additional face pairing isometries, it will be a fundamental domain for a group ¡j(O19; 6a; 6b) which will be a super group 

of ¡(T19; 6a; 6b). We require, also later on, that the new generators keep the original simplex face structure. A trivial group 

extension with plane rejections mi, i = 0; 1; 2; 3, in polar planes of the outer vertices Ai is always possible (Figure 3). 

Then the new group, by Theorem 2.1 is ¡1(O19; 6a; 6b) =(r0; r1; r2; r3; m0; m1; m2; m3 ¡ r0
2
 = r1

2
 = r2

2
 = r3

2
 = m

2
0 = m

2
1 = m

2
2 

= m
2

3 = (r0r1r2r1r0r3)
a
 = (r3r2r0r2r3r1)

b
 = m0r3m0r3 = m1r2m1r2 = m2r0m2r0 = m3r1m3r1 = m0r2m3r2 = m1r3m2r3 = m0r1m2r1 = 

m1r0m3r0 = 1): 

 

 

 

 

 

 

 

Figure 3. The trunc simplex O19
1
 with trivial group extension 

 

There is a further possibility to equip the new triangular faces with face pairing isometries (Figure 4). New 

additional face pairings of O19 have to satisfy the follow-ing criteria. Polar plane of A2 and so stabilizer ¡(A2) will be 

invariant under these new transformations, Xing A2, and exchanging the half spaces obtained by the polar plane. Thus, 

fundamental domain PA2 is divided into two parts, and the new stabilizer of the polar plane will be a super group for ¡(A2), 

namely of index two. Inner symmetries of the PA2 -tiling give us the idea how to introduce a new generators. Let g be the 

glide refection as a composition of the translation in the plane of the vertex Figure with a rejection in this plane. Then g 

maps the vertex Figure TA2 onto TA
r0

3
r3

 

and T r0 r3 onto T  r1 r2r0r3 , equivalent to T A

2 

. Then g also maps T r1 onto T r3 

1 

and T r3 onto T r2 r0r3 ,  

 A  3    A  2       A  0 A   A  1  A  0   

equivalent to T 

A 

r1  . In that case the new generators for ¡ 

2 

(O 

19 

; 6a; 6b) will be g and g = r 

1 

g r  in Figure 4,  

   0        1   2    1 0    

while the new group, by Theorem 2.1 is ¡2(O19; 6a; 6b) = (r0; r1; r2; r3; g1; g2 ¡ r0
2
 = r1

2
 = r2

2
 = r3

2
 = (r0r1r2r1r0r3)

a
 = 

(r3r2r0r2r3r1)
b
 = r3g1r2g1

¡1
 = g1r3g2r2 = g1r0g2

¡1
r1 = r0g2r1g2

¡1
 = 1): 

 

 

The PA2 -tiling in the polar plane of A2 do not allow other identifications on the truncated simplex O19. 
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Figure 4. The trunc simplex O19
2
 with non-trivial group extension 

 

Fundamental domains T19 and O19
j
 (j = 1; 2) above, allow to divide them to smaller polyhedra, equipped with face 

pairing identifications. Namely, there is a half-turn h Ã! h : 
A
0 

A
1 

A
2 

A
3 

A
1 

A
0 

A
3 

A
2 leaving invariant the tessellations of 

space with T19 or O19
j
, so groups ¡(T19; 6a; 6b) and ¡j(O19; 6a;6b) are not maximal. The authomorphism groups 

2
2¡6(3u; 3v) 

of their tilings ([8], [9]) have domains which are fundamental polyhedra of piecewise linear bent faces. That domains are 

obtained by identifying equivalent points, under sym-metry h, of simplex T19 (Figure 5), and consequently also each trunc 

simplex O19
j
 above (j = 1; 2). Since r3 = hr2h and r1 = hr0h, presented for a 6= b, maximal groups are now (with u = 2a and 

v =2b for the rotational parameters) by 
2

2¡6(3u; 3v) =(h; r0; r2 ¡ h
2
 = r0

2
 = r2

2
 = (r0hr0hr2h)

u
 = (r2hr2r0)

v
 = 1; u = 2a; v = 2b) 

and ¡(Q; 3u; 3v) = (h; r0; r2; m1; m2 ¡ h
2
 = r0

2
 = r2

2
 = m

2
1 = m

2
2 = (r0hr0hr2h)

u
 = (r2hr2r0)

v
 = m1r2m1r2 = m2r0m2r0 = m1r2m2r2 

= m1r0m2r0 = 1; u = 2a; v = 2b): 

 

 

 

 

 

 

 

 

 

Figure 5. The fundamental domain of supergroup 
2

2¡6(3u; 3v) 

 

 

If a = b then simplex T and trunc simplex O
j
  have more symmetries. Then the maximal supergroup for ¡(T19; 6a; 6b) is 

a Coxeter group, by [9], while the maximal supergroup for ¡j(O19; 6a; 6b) might have only the trivial extension, so it is 

also a Coxeter group. 
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3.2. SIMPLEX T46 

For T46(6a; 3b), the face pairing isometries are (Figure 6): 

A0 A1 A3 A0  A1 A2  

r2 : 
Ã
 A3 A1 A0 ! ;  r3 : 

Ã
 A0  A2 A1 

!
 ;  s : 

Ã
 

and the tiling group is 

 

 

A
1   

A
2   

A
3 

 

A2    A3    A0   
!
 ; 

¡(T46; 6a; 3b) = (r2; r3; s ¡ r2
2
 = r3

2
 = (s

2
r2s

¡2
r3)

a
 = (r2sr3)

b
 = 1; a; b 2 N): 

 

One fundamental domain for the stabilizer group ¡(A2) of the vertex A2 (Figure 6) is PA2 := TA
r2

0
s¡1

 [ TA
s¡

3
1
 [ TA2 [ TA

r3
1 

and the generators are then sr2r3r2s
¡1

 : (fr3 )
r2s¡1

 ! (fr3 )
r2s¡1

 ; s
2
r2s

¡1
 : (fs

¡1
)

s¡1
 ! (fs)

r2s¡1
 ; r3s : (fs¡1  )

r3
 ! fs;  r3r2r3 : (fr2 )

r3
 ! (fr2 

)
r3

 : The stabilizer ¡(A2) of PA2 above is hyperbolic i® (again by the angle sum criterion for PA2 ) 2=b + 1=a < 2. Then 

truncating the simplex by polar planes of the vertices, 

 

 

 

 

 

 

 

 

Figure 6. The simplex T46 and the fundamental domain PA2 

 

a new trunc-simplex O46 may have plane rejections as face pairing isometries of the new faces. In this case the new group 

is (Figure 7) 

¡1(O46; 6a; 3b) =(r2; r3; s; m0; m1; m2; m3 ¡ r2
2
 = r3

2
 = m

2
0 = m

2
1 = m

2
2 = m

2
3 = (s

2
r2s

¡2
r3)

a
 = 

(r2sr3)
b
 = m0r3m0r3 = m1r2m1r2 = m0r2m3r2 = m1r3m2r3 = m2sm3s

¡1
 = m3sm0s

¡1
 = m1sm2s

¡1
 = 1): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 7. The trunc-simplex O46 
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Other possibility, by symmetries of the fundamental domain PA2 is the group ex-tended by the point rejection z, 

indicated in Figure 6. This point rejection rejection z (say) maps the triangle of A2 to that of A
s
3

¡1
 and triangle of A

r
1
3
 to 

that of A
r
0
2s¡1

 in PA2 (Figure 6). Thus, the above z induces new generators g1 and g2 as glide rejections, pairing the 

truncations at A2, A3 and those at A1, A0, respectively. 

 ¡2(O46; 6a; 3b) =(r2; r3; s; g1; g2 ¡ r2
2
 = r3

2
 = (s

2
r2s

¡2
r3)

a
 = (r2sr3)

b
 = r2g2r3g2

¡1
 = g2r2g1

¡1
r3 = sg1sg2

¡1
 = g1s

¡1
g1s

¡1
 = 1): 

If r0 and h are similarly introduced, as in the previous section, so that r3 = hr2h and s = r0h hold. Then the maximal group 

2
2¡6(3u; 3v), now with u = 2a, v = b, will be supergroup of ¡(T46; 6a; 3b), and ¡(Q; 3u; 3v) extends ¡j(O46; 6a; 3b) (j = 1; 2) as 

well. 

 

3.3. SIMPLEX T59 

In the case of the simplex T59(3a; 3b) the face pairing identifications are (Figure 8) 

    A1  A2  A3         A0  A1  A3    

   s1 : 
Ã
  A2  A3  A0 

!
 
;
    s2 : 

Ã
   A2  A0  A1   !    

and the presentation of the group is               

   ¡(T59; 3a; 3b) = (s1; s2 ¡ (s1 
2
s2)

a
 = (s2 

2
s1 

¡1
)
b
 = 1; a; b 2 N):   

The stabilizer group ¡(A0) has fundamental domain (Figure 8)    

       s        s¡1     

       2   s2 

[ TA0 

  2     

    PA0 := TA 3 [ TA  1 [ TA 2     

and the generators                
 

2  s
2
  1 ¡ 1    s   

s¡

1  2 s¡1 s
2
 
 

s2 s1 : (fs¡1 ) 
2
 fs1 ; s2 

s
1

s
2  : (fs¡1 ) 2 

(fs1 ) 

2
   ; s2s1s2 

: (fs¡1 )  

2 (fs1 ) 
2
 : 

 

  1 !     1   !      1 ! 
 

 

 

 

 

 

 

 

Figure 8. The simplex T59 and the fundamental domain PA0 

 

There are two possibilities for the isometry group with trunc-simplex O59 as a fundamental domain, i® 1=a + 1=b < 1. 

In the trivial case, group is (Figure 9) 
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Figure 9. The trunc-simplex O59 

 

¡1(O59; 3a; 3b) =(s1; s2; m0; m1; m2; m3 ¡ m
2
0 = m

2
1 = m

2
2 = m

2
3 = (s

2
1s2)

a
 = (s

2
2s

¡
1
1
)

b
 = m2s1m3s

¡
1
1
 = m3s1m0s

¡
1
1
 = m1s1m2s

¡
1
1
 = 

m3s2m1s
¡
2
1
 = m1s2m0s

¡
2

1
 = m0s2m2s

¡
2
1
 = 1): 

Taking g1 and g2 = s
¡
2
1
g1s

¡
2

1
 as a new generators, other possibility for the group is ¡2(O59; 3a; 3b) =(s1; s2; g1; g2 ¡ (s

2
1s2)

a
 

= (s
2
2s

¡
1
1
)

b
 = g1s1g2s1 = g1s2g1s2 = s2g2s2g1

¡1
 = g2s

¡
1

1
g2s

¡
1
1
 = 1): 

Since, it is possible to express the face pairing isometries s1 and s2 of T59 by h, r0, r2: s1 = r0h and s2 = r2h, the groups 

2
2¡6(3u; 3v) and ¡(Q; 3u; 3v) are super groups of the groups ¡(T59; 3a; 3b) and ¡j(O59; 3a; 3b), (u = a; v = b). 

 

3.4. SIMPLEX T31 

The face pairings identifications for the simplex T31(6a; 12b) are (Figure 10) 

A1 A2 A3 A0 A2 A3 A0 A1 A2  

m : 
Ã
 A1 A2 A3 ! ;  r : 

Ã
 A2 A0 A3 ! ;  s : 

Ã
 A1 A3 A0 

!
 : 

The group presentation is ¡(T31; 6a; 12b) =(m; r; s ¡ r
2
 = m

2
 = (rmrs

¡1
ms)

a
 = (rs

2
ms

¡2
rs

2
ms

¡2
)

b
 = 1; a¸ 1; b¸ 1): For the stabilizer 

group ¡(A1) one of the fundamental domains is (Figure 10) PA1 := TA
s2

2 [ TA
s
0 [ TA1 [ TA

s¡
3

1
 

 

 

 

 

 

 

 

 

 

Figure 10. The simplex T31 and the fundamental domain PA1 with generators 

 

srs
¡1

 : (f )
s¡1

 ! (f )
s¡1

 ; s
¡1

rs : (f )
s2

 ! (f )
s
: 

r r  r r 

 

After truncating the simplex by the polar planes of the vertices, i® 1=b + 1=a < 4 trunc simplex O31 may have only trivial 

group extension (Figure 11) 
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¡(O31; 6a; 12b) =(m; r; s ¡ r
2
 = m

2
 = (rmrs

¡1
ms)

a
 = (rs

2
ms

¡2
rs

2
ms

¡2
)

b
 = m3rm3r = m0rm2r = m1mm1m = m2mm2m = 

m3mm3m = m1sm3s
¡1

 = m2sm0s
¡1

 = m0sm1s
¡1

 = 1; a ¸ 1; b ¸ 1): 

 

 

 

 

 

 

 

1 

Figure 11. The trunc-simplex O31 

 

It is not possible to extend generators of T31 by h, since then a new rejection plane on halfturn axis r would yield a = b 

and we got the richer family F.1. 
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