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ABSTRACT
A method to study the changes in the retinal vasculature of diabetic patients is proposed. Generalized fractal

dimension followed by canny edge detection method is used to classify diabetic people from healthy one.

Statistical analysis is also done to verify the classification results.
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I. INTRODUCTION

The number of diabetic people in the world is increasing significantly day by day according to a recent report
(see [1]) but most of them remain undiagnosed and they may end up with more complicated diseases like
diabetic retinopathy, diabetic neuropathy etc.(refer [2] and [3]). So, it is required to develop techniques to
diagnose risk of diabetes in early stages. Retinal imaging is a new advancement in technology, which helps in
the early detection of eye diseases.

There are number of studies available in the literature regarding classification of retina images. These
techniques include the use of linear discriminant analysis, artificial neural network, support vector machine,
wavelet transform etc.(for example see [4], [5], [6] and [7]). Retinal images are non linear in nature. So,
techniques from non linear dynamics and chaos theory such as correlation dimension have also been given by
different authors (see [8], [9] and several references thereof). In this paper, we classify retina images of diabetic
and healthy persons using generalized fractal dimension (GFD). To apply GFD, first preprocessing step is
employed in which we convert given colored image into grayscale and then image segmentation is done using
canny edge detection method. To implement the method, we use image processing toolbox of Matlab.

First we present some basic concepts required in the sequel.

1.1 Fractal Theory
Mandelbrot observed that geometry of natural objects such as trees, clouds, mountains etc. does not resemble
the traditional shapes in geometry. Modeling of such objects is a difficult task in comparison to man-made

objects due to their irregular, non-smooth, highly complex geometries (refer [10] and [11]). He proposed fractal
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geometry to deal with such type of objects. Some of the well known mathematical fractals have many features in
common with the shapes found in nature. One of the interesting features is their self similarity, i.e., a repetitive
patterns on smaller scales. Number of authors have studied and applied this feature for different applications (for

instance, see [12-14]). The retinal images also show some kind of self similarity.

1.2 Fractal Dimension

The concept of fractal dimension was proposed by Felix Hausdorff after observing the repetitive pattern in
fractals.

Definition 1. [10] Let A be a non empty subset of a Hausdorff space H(X), where (X, d) is a metric space. For

each € >0, let N(A &) denotes the smallest number of closed balls of radius & > O needed to cover A. Then

. [In(N(A€)
D"!EE‘{ in(L/) }

The fractal dimension defined above is best suited for the objects which are exactly self similar in nature. But in

Hausdorff dimension of A is given by

If the limit exists.

many practical situations, objects may not be exactly self similar. The concept of box counting dimension is
used in such cases. To calculate the box counting dimension of any arbitrary set A, we cover the set A with
boxes and find how the number of boxes changes with the size of the boxes. If
5 InN(M)
In(1/r)

Then slope D gives the numerical value of box counting dimension, where, N(r) is the minimum number of
boxes of size r required to cover the object A.

This concept of box counting dimension has been widely used as a diagnostic tool for different diseases like
cervical cancer, brain tumors, epileptic seizures etc. (for example see ([15] and [16]). Main disadvantage with
the box counting dimension is that when we calculate it for any object, any box is counted or not counted at all,
according to whether some points or no points exists in the box. It does not take into consideration the number
of points in the box counted. So, we still remain very far from the exact measurement of the dimension. For
example, in Figure 1, we have two different shapes with same box counting dimension 1.74. Thus we still did

not get a good classification.

Lo R

Figure 1. Two Different Shapes with Same Box Counting Dimension 1.74
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Various other methods have also been proposed in the literature by different authors to find fractal dimension
such as information dimension, correlation dimension etc. Hentschel and Procaccia [17] generalized these
definitions in the form of a generalized fractal dimension (GFD) which contains almost all the above as special
cases.

Definition 2. [17] Let x be the natural probability measure on the set A, and By(x) be the ball of radius |
centered at a point x of A. Then GFD is defined by Dg, which is
1 . 1 _
D, == lim-~—log [ du(x)(u8, ().
g-1r0ologr

Our basic aim is to use GFD for the purpose of good classification of retina images to diagnose diabetic
retinopathy in early stage.

I1. MATHEMATICAL ANALYSIS

First we divide the image into boxes of the size ixi for different i, where i is a natural number, Let B; denotes the
i" box and let P = (B )/ u(A) be the normalized measure of this box. To practaically calculate generalized

dimension Dg, we find natural probability measure, which is equivalent to the probability p;, of any arbitrary
point to be in i™ box B;. probability p; is calculated as number of boxes containing i points divided by the
maximum number of points inside a box [17].
GFD for practical implementation is given by

log > P¢

D = lim—sc—. 1
® gq-1-0 logr @

Where, %IinglogZPiq is called generalized Renyi entropy [17]. For q = 0, GFD becomes box counting
q_ r—f

ier
dimension, for g—1, it tends to information dimension, for q = 2, it becomes correlation dimension and so on.
Thus, there exists infinite number of generalized dimensions of fractals. Many authors use generalized
dimension for the classification in different areas like satellite imagery, texture analysis etc. (for instance see

[18] and [19]). Since this method is based upon probability, it is also called probabilistic fractal dimension.
I1l. DATA COLLECTION

To implement the method, we use retinal image dataset available online [20].

(a) 02_dr.jpg (f) 03_h.jpg
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Figure 2. (a) to (e) Diabetic Retinopathy Images, (f) to (j) non Diabetic Retinopathy Images
IV. RESULTS AND DISCUSSION

The proposed method is implemented on the selected images from the data available online ([20]). All the
calculations are done by taking the value q =1.8 in equation (1). To show the results, we randomly select 5
images from diabetic retinopathy images and 5 retina images of healthy eyes shown in Figure 2. The plots of
generalized Renyi entropy versus log r are given in Figure 3.

It is well known that the, performance of the non-parametric Kruskal-Wallis test is better than the parametric
equivalent Anova test in case of asymmetric population [21]. So, for statistical verification of the present
classification, we apply Kruskal-Wallis test. Further, we put GFD of diabetic data in column 1 and healthy data

in column 2 for 15 images from each category and the Kruskal Wallis test is used for the two columns. Test of
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classification results on selected images for GFD is given in Table 1. The obtained p-values in Table 1 are very
small. So, Kruskal-Wallis test also indicates that GFD gives a good classification results. We also draw box
plots for the same as shown in Figure 4, which also indicate that the method serves as a good classifier for

diabetic retinopathy.
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Figure 3. Generalized Renyi entropy verus log r for both diabetic and healthy ratina images
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Figure 4. Box plots for diabetic and healthy retina images
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Table 1. Kruskal Wallis Anova Table for GFD of diabetic and healthy retina images

Source SS df MS Chi-sq Prob>Chi-sq
1.02_drand 03_h

Columns 500 1 500 14.29 0.0002
Error 165 18 9.1667

Total 665 19

2.04_drand 06_h

Columns 500 1 500 14.29 0.0002
Error 165 18 9.1667

Total 665 19

3.08 drand 11 _h

Columns 460.8 1 460. 13.17 0.0003
Error 204.2 18 11.344

Total 665 19

4.13 drand 14_h

Columns 500 1 500 14.29 0.0002
Error 165 18 9.1667

Total 665 19

5.15 drand 15 _h

Columns 500 1 500 14.29 0.0002
Error 165 18 9.1667

Total 665 19

SS=sum of squares, MS=mean of squares, DF=degree of freedom, Chi-sq=Chi-square value.

V. CONCLUSION

We use multi scale generalized fractal dimension method for extracting descriptors to characterize diabetic

retinopathy. The results verify that the GFD provides good classification which is statistically verified by

Kruskal-Walli's test. Box plots and Anova tables indicate the efficiency of the method employed. This method

may also provide excellent results for other retinal disease also. Moreover, this method can also be used for the
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classification in other areas like speech recognition, humon motion analysis, handwriting analysis, quantifying

the branching frequency of virtual filamentous microbes etc.
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