

217 | P a g e

PERFORMANCE ANALYSIS OF SLB AND DLB

ALGORITHMS IN DISTRIBUTED COMPUTING

ENVIRONMENT

D.Sandhya Rani
1
, D.Shalini

2
, M.Suman Kumar

3

1
Computer Science & Informatics, University College of Engineering& Technology, MGU, (India)

2
Computer Science & Engineering, SRTIST, (India)

3
Electronics & Communication Engineering, GNIT, (India)

ABSTRACT

Distributed Systems are gradually being accepted as the dominant computing paradigm of the future. A

Distributed system is a software system in which components located on networked computers communicate and

co-ordinate their actions by passing messages. Load Balancing involves assigning tasks to each processor and

minimizing the execution time of the program. In this paper we present the performance analysis of various load

balancing algorithms based on different parameters considering two typically load balancing approaches static

and dynamic and also their merits and demerits and by comparision on certain parameters. The main purpose

of this paper is to help in design of new algorithms in future by studying the behaviour of various existing

algorithms.

Keywords: Distributed Computing, DLB, Load Balancing, SLB

I. INTRODUCTION

Processing speed of a system is always highly intended. In parallel and distributed systems more than one

processor process parallel programs. The amount of processing time needed to execute all processes assigned to

a processor is called workload of a processor. The amount of processing time needed to execute all processes

assigned to processor is called load of a processor. Recently distributed systems with several hundred powerful

processors have been developed. Distributed computing system provides high performance environment that are

able to provide huge processing power. The main goal is to distribute processes among processors to maximize

throughput, minimize communication delays, maximize resource utilization, maintain stability and fault

tolerant[1]. The distribution of loads to the processing elements is called load balancing problem. In a system

with multiple nodes there is a high chance that some nodes will be idle while the other will be overloaded. In

previous load balancing studies, a common approach is to use a simple model of the distributed system with

assumptions such as large communication bandwidth, negligible load balancing and to search for complex load

balancing algorithms whose viability is questionable and which might provide only little or no gain when

evaluated on realistic systems. In this paper, the goal of the load balancing algorithms is to maintain the load to

each processing element such that all processing elements become neither overloaded nor idle[2][3]. Therfore

the proper design of a load balancing algorithm may significantly improve the performance of a system.

218 | P a g e

II. LOAD BALANCING

Load Balancing is used to distribute work between two or more processors, computers, networks or memory

devices in order to channelize the resources in an efficient manner and to get optimized response times and

throughputs. Load balancing is the way of distributing load units across a set of processors which are connected

to a network which may be distributed across the globe. By load balancing it is possible to make every processor

equally busy and to finish the works approximately at same time.

2.1. Benefits of Load Balancing

a) Load Balancing improves the overall performance of each node and hence the overall system performance.

b) Load balancing reduces the job idle time.

c) Maximum utilization of resources.

d) Higher throughput.

e) Response time becomes shorter

f) Low cost but high gain

2.2 Static Load Balancing

In static load balancing algorithm the processes are assigned to the processors at the compile time according to

the performance of the node. Number of jobs in each node is fixed in static load balancing algorithm .The

assignment of jobs is done to the processing nodes on the basis of the following factors: incoming time, extent

of resources needed, mean execution time and inter process communication.

Fig 1. Shows the schematic diagram of static load balancing where local tasks arrive at the assignment queue. A

job either be transferred to a remote node or can be assigned to threshold queue from the assignment queue.

Once a job is assigned to threshold queue, it cannot be migrated to any node. A job arriving at any node either

processed by that node or transferred to another node for remote processing through the communication

network.

Fig 1. Model of Processing Node

219 | P a g e

Static Load Balancing can be classified into two categories – optimal and sub-optimal.

2.2.1. Optimal SLB

When all the information regarding the state of the system as well as the resource needs is known an optimal

assignment can be made based on some criterion function. Examples of optimization measures are minimizing

total process completion time, maximizing utilization of resources in the system, or maximizing system

throughput. For example simulated Annealing (SA) and genetic algorithms (GA’s) are optimization techniques

2.2.2. Sub-Optimal SLB

When for some of computations, optimal solution does not exist then sub-optimal methods can be applied.

These methods rely on the rules-of-thumb and heuristics to guide a scheduling process. List scheduling is the

most popular technique despite of poor performance in high communication delay situations. Lot of static

algorithms, taking into account their optimal and sub-optimal nature, has been suggested by researchers so far.

This includes approximate algorithms like Solution space enumeration and search, Graph theoretic

approach[4][5] , Mathematical programming and queuing theoretic. Some other are round-robin algorithm,

recursive-bisection algorithm, heuristic algorithms and randomized algorithms.

2.3 Dynamic Load Balancing

Unlike static algorithms, dynamic algorithms allocate processes dynamically when one of the processors

becomes under loaded. Instead, they are buffered in the queue on the main host and allocated dynamically upon

requests from remote hosts.

2.3.1. Central Queue

It stores new activities and unfulfilled requests as a cyclic FIFO queue on the main host. Each new activity

arriving at the queue manager is inserted into the queue. Then, whenever a request for an activity is received by

the queue manager, it removes the first activity from the queue and sends it to the requester. If there are no ready

activities in the queue, the request is buffered, until a new activity is available. If a new activity arrives at the

queue manager while there are unanswered requests in the queue, the first such request is removed from the

queue and the new activity is assigned to it.

2.3.2. Local Queue

The basic idea of the local queue algorithm is static allocation of all new processes with process migration

initiated by a host when its load falls under threshold limit, is a user-defined parameter of the algorithm. The

parameter defines the minimal number of ready processes the load manager attempts to provide on each

processor.

A DLB algorithm considers following issues:

 (1) Load estimation policy: which determines how to estimate the workload of a particular node of the

system.

(2) Process transfer policy: which determines whether to execute a process locally or remotely.

(3) State information exchange policy: which determines how to exchange the system load information among

the nodes.

(4) Priority assignment policy: which determines the priority of execution of local and remote processes at a

particular node.

220 | P a g e

 (5) Migration limiting policy: which determines the total number of times a process, can migrate from one

node to another.

III. IDENTIFICATION OF COMPARATIVE PARAMETERS

1. Nature: This factor is related with determining the nature or behavior of load balancing algorithms, that is

whether the algorithm is of static or dynamic nature, pre-planned or no planning. SLB algorithms are of static

and planned nature as tasks are assigned statically i.e. at compile time in a planned manner at compile time to

processors and there will be no redistribution of tasks takes place afterwards and outcome of the algorithm is

deterministic as much of the job information is known a priori. DLB algorithms are of dynamic and no-planning

nature as tasks are assigned at run-time to processors and tasks redistribution can take place if task assignment

that was earlier done is not giving good performance (that is if proper balancing of load is not there). So their

behavior is totally nondeterministic and no initial planning is done for assigning load to hosts as this work is

done at run-time.

 2. Overhead Associated : This factor is related with determining the amount of overhead involved while

implementing a load-balancing algorithm. It is composed of overhead due to movement (relocation) of tasks,

inter-processor communication, and inter-process communication. SLB algorithms incurs lesser overhead as

once tasks are assigned to processors, no redistribution of tasks takes place, so no relocation overhead. DLB

algorithms incur more overhead relatively as relocation of tasks takes place here.

 3. Resource Utilization : This factor is used to check the resource utilization. SLB algorithms have lesser

resource utilization as static load balancing methods just tries to assign tasks to processors in order to achieve

minimize response time ignoring the fact that may be using this task assignment can result into a situation in

which some processors finish their work early and sit idle due to lack of work. DLB algorithms have relatively

better resource utilization as dynamic load balancing take care of the fact that load should be equally distributed

to processors so that no processors should sit idle.

 4. Processor Thrashing: Processor thrashing occurs when most of the processors of the system are spending

most of their time migrating processes

5. Preemptiveness : This factor is related with checking the fact that whether tasks in execution can be

transferred to other nodes (processors) or not. SLB algorithms are inherently non-preemptive as no tasks are

relocated. DLB algorithms are both preemptive and non preemptive.

 6. Predictability: This factor is related with the deterministic or nondeterministic factor that is to predict the

outcome of the algorithm. SLB algorithm’s behavior is predictable as most of the things like average execution

time of processes and workload assignment to processors are fixed at compile-time. DLB algorithm’s behavior

is unpredictable, as everything has been done at run time.

7. Adaptability :This factor is used to check whether the algorithm is adaptive to varying or changing situations

i.e. situations which are of dynamic nature. SLB algorithms are not adaptive towards all circumstances as this

method fails in dynamic or varying nature problems i.e. situation in which number of processes are not fixed,

also in situations which may require indeterminate steps towards solution. DLB algorithms are adaptive towards

every situation whether numbers of processes are fixed or varying one.

221 | P a g e

8. Reliability: Which algorithm is more reliable in case of some host failure occurs. SLB algorithms are less

reliable because no task/process will be relocated / transferred to another host in case a node fails at run-time.

DLB algorithms are relatively more reliable as here processes can be transferred to other nodes in case of failure

of node occurs.

 9. Response Time: How much time a distributed system using a particular load balancing algorithm is taking to

respond? SLB algorithms have shorter response time as one should not forget that in SLB there is lesser

overhead as discussed earlier so emphasis is totally on executing jobs in shorter time rather than optimally

utilizing the available resources. DLB algorithms may have relatively higher response time as sometimes

redistribution of processes takes place. Some time is being consumed during task migration

 10. Stability : Stability can be related to the exchange of present workload state information among processors.

IV. COMPARISION

 This comparison work in tabular form is shown below.

S.NO parameters Load Balancing

SLB Algorithm DLB algorithm

 Nature Static i.e. workload is assigned

at compile time

Dynamic i.e. workload is assigned at

run time

1 Associated overhead Lesser overhead More overhead

2 Resource Utilization Lesser Utilization More Utilization

3 .Processor Thrashing No Thrashing Substantial Thrashing

4 Preemptiveness Non-preemptive Preemptive and Nonpreemptive

5 Predictability More Predictable Lesser predictable

6 Adaptability Less adaptive More Adaptive

7 .Reliability Less More

8 Response Time Less More

9 Stability More Less

V. CONCLUSION

Load balancing algorithms is totally dependent upon in which situations workload is assigned, during compile

time or execution time. The above comparison shows that static load balancing algorithms are more stable than

dynamic. But dynamic load balancing algorithms are always better than static as per as overload rejection,

reliability, adaptability, cooperativeness, fault tolerant, resource utilization, response & waiting time and

throughput is concert. The purpose of this paper was to compare these load balancing algorithms based on

identified qualitative parameters.

222 | P a g e

REFERENCES

[1] Abhijit A. Rajguru, S.S. Apt” A Comparative Performance Analysis of Load Balancing Algorithms in

Distributed System using Qualitative Parameters” International Journal of Recent Technology and

Engineering (IJRTE) ISSN: 2277-3878, Volume-1, Issue-3, August 2012.

[2] Berenbrink P., Friedetzky T. and Steger A. “Randomized and Adversial Load Balancing”. CIteSeerx,1997

[3] Hamdi M. and Lin C.K. “Dynamic Load Balancing of Data Parallel Applications on a Distributed

Network”. In 9
th

 International Conference on Supercomputing,ACM,170-179,1995.

[4] H.S. Stone. “Multiprocessor scheduling with the aid of network flow algorithms”. IEEE Trans of Software

Engineering, SE-3(1):95--93, January 1977.

[5] H.S. Stone, “Critical Load Factors in Two-Processor Distributed Systems,” IEEE Trans. Software Eng.,

vol. 4, no. 3, May 1978.

[6] Sandeep Sharma, Sarabjit Singh, and Meenakshi Sharma,” Performance Analysis of Load Balancing

Algorithms”, World Academy of Science, Engineering and Technology 38 2008

[7] Y.Wang and R. Morris, "Load balancing in distributed systems," IEEE Trans. Computing. C-34, no. 3, pp.

204-217, Mar. 1985.

