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ABSTRACT

Survival analysis examines and models the time it takes for events to occur, termed survival time. The Cox
proportional-hazards regression model is the most common tool for studying the dependency of survival time on
predictor variables. This paper describes the Cox regression model, and explains how to use the survival
package in R to estimate Cox regressions. Survival estimates are an essential compliment to multivariable
regression models for time-to-event data, both for prediction and illustration of covariate effects. They are easily

obtained under the Cox proportional-hazards model. Finally the data from the accelerated life test are analyzed.

Keywords: Cox Proportional-Hazards Regression Model, R, Survival Estimation, Time-Dependent

Covariates, Time-Varying Coefficients.

I. INTRODUCTION

Survival analysis examines the time it takes for events to occur. The prototypical such event is death, from
which the name "survival analysis" and it will focus on analyzing the distribution of survival times. The survival
modeling examines the relationship between survival and one or more predictors, usually termed covariates in
the survival-analysis literature. The survival package in R contains the commonly employed tools of survival
analysis [1], [2].

Let T represent survival time. We regard T as a random variable with cumulative distribution
function P(t) = Pr (T < ). And probability density function p(t} = dP(t)/dt. The survival function S(t) is
the complement of the distribution function, 5t} =Pr(T = t) =1 — P(t).A fourth representation of the
distribution of survival times is the hazard function, which assesses the instantaneous risk of demise at time t,
conditional on survival to that time:

Pri(¢t =T <t + AT =t F(B) 1)

h(E) = 1 =
@) = Jim At 5(E)

A feature of survival data is censoring, the most common form of which is right-censoring: Here, the period of
observation expires, or an individual is removed from the study, before the event occurs. Censoring complicates
the likelihood function, and hence the estimation, of survival models.

Survival analysis typically examines the relationship of the survival distribution to covariates. For example, a
parametric model based on the exponential distribution may be written
aslogh; (£} =& + Byx;y + Byxip + -+ Bpxgpor, equivalentlyh; (8) = expla + Byx; + foxpg + -+ Brxg).
The constant in this model represents a kind of log-baseline hazard, sincelog h; {(t) =& ork; () = & when all

of thex’s are 0. The Cox model leaves the baseline hazard functionz(t) =lagh, (£)unspecified
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logh; () = a(®) + Byxy + Baxi + - + Brxgor,
equivalentlyh; (£) = hy(t) exp(B,x;, + Byx; + -+ Brx ). This model is semi-parametric because while the

baseline hazard can take any form, the covariates enter the model linearly.

1.1 The Proportional-Hazards Model

Consider, now, two observations ¢ and @' that differ in their x-values, with the corresponding linear
predictorsn; = Bixpy + B xpp + o+ Bpxg andny = Fixgy + FoXpn + o + By X, The hazard ratio for these
two observations,

m(E) _ ho(0)e™ o™ @
R () ho(t)e™’  em’

is independent of time t. Consequently, the Cox model is a proportional-hazards model. Even though the
baseline hazard is unspecified, the Cox model can still be estimated by the method of partial likelihood. In his
1972 paper [3], Cox introduced two key ideas: a simple model for the relationship between covariates and the

hazard of experiencing an event, and a partial-likelihood approach to estimate the model parameters.

1.2 The Hazard of Failure

The Cox proportional-hazards regression is thoroughly described elsewhere ([4], [5], [6] and [7]). Following
Fox (2011) [8], for subjects i = 1.....m let T; denote the failure time, C; denote the censoring time, and N;(t)
represent a counting process such that N;(t} = I((T; = t) where I(x) is the indicator function taking value 1 if
event u occurs and 0 otherwise. A subject is at risk until they experience an event or are censored. ¥;{t} Indicate
whether the ith subject is at risk at timet, i.e.¥;(t) = I{min (T;, ;) < t]. Let X; denote a predictor of interest;
and £; a (p = 1) vector of additional covariates, where T; and £; are independent given X; andZ;. The failure
time T; is not available for all subjects, but instead min{T;, €;} and &; = I{T; = ;) are observed. The hazard of
failure A{t|X. Z is related to the covariates by:

Altlx.z) = ?lirgn_{h‘lP{t <t+hT=tXZ)

Altlx, 20 = A,(8) exp (X + 5T 2) 3)

1.3 Accelerated Failure time Models
The accelerated failure time (AFT) model specifies that predictors act multiplicatively on the failure time
(additively on the log of the failure time). The predictor alters the rate at which a subject proceeds along the
time axis. The model is:
5Ct1x) = w(Coglt) — x8) /o) 4)
where ¥ is any standard survival distribution and o is called the scale parameter.

We can also write this relationship as:

loglT) = X8 + oe (5)

where £ is a random variable from the % distribution.

Assumptions:

* The true form of ¥ is correctly specified.
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* Each X; affects log T linearly (assuming no interactions).

- 7 is a constant, independent of X’
The exponential and Weibull distributions are the only two distributions that can be used to describe both PH

and AFT models. These models can be fit in R using the survreg() function.

1.4 Exponential Proportional Hazards Regression

The exponential survival regression model can be expressed ash (#|X) = 1 exp (X5)

S(¢X) = expl—Atexp (XB)] = exp(—ag) =26 (4)
The regression can also be written aslog h{(£lX) =log{1) + X8 If we replace 1 withA = exp (8,), then
h(t|X) = exp(p, + XB) (%)

Therefore, we can think of das a transformed intercept term.

1.5 Weibull and Extreme Value Distributions

The Weibull distribution is often used for product life [9]. It is also used to describe the life of electronic
components in accelerated tests. According to extreme value theory, it may describe a “weakest link” product.
Such a product consists of many parts from the same life distribution, and the product fails with the first part
failure.

The population fraction failing by age £ isF(t) = 1 — exp[—(t/a)F]. The shape parameter £ and the scale
parameter o« are positive. For a Weibull distribution, the population fraction surviving age ¢
isR(£) = exp[—(t/a)?], the probability density isf(t) = (8/af)tFtexp[—(t/a)f], and for the hazard
function, we have h(t) = (8/a)(t/a)f~*

The extreme value distribution is an analytic methods for Weibull data. InT for a Weibull distribution has an
extreme value distribution. The population fraction below ¢ isF{t} = 1 — exp{— exp[(t — £) /&6]}. The location
parameter isf and the scale parameter is&. The extreme value reliability function
isR(t) = expl—exp [t — £} /513, the probability density is
£&) = (1/8) exp [ — £) /6] expl— exp [ — £)/613 and the hazard function ish(#) = (%) expl(t — £)/51.

Suppose a Weibull life distribution has shape and scale parameters & ande. The In(t} has an extreme value
distribution with £ =Ina andé = 1/8.The last equation shows that the spread in InT is the reciprocal off.
The Weibull parameters can be expressed asx = exp £ andf = 1/4.

1.6 Weibull AFT Regression Functions in R

Weibull accelerated failure time (AFT) regression can be performed in R using the survreg function. The
survreg fit a parametric survival regression model. These are location-scale models for an arbitrary transform of
the time variable; the most common cases use a log transformation (in R, log computes logarithms, by default
natural logarithms, and log10 computes common (base 10) logarithms), leading to accelerated failure time
models.

The results are not, however, presented in a form in which the Weibull distribution is usually given. In Therneau

(2014) [10], accelerated failure time models are usually given by:

48 |Page




International Journal of Advance Research in Science and Engineering
Vol. No.4, Issue 11, November 2015

www.ijarse.com IJARSE

ISSN 2319 - 8354
logT=Y=u+a z+oW (6)
where =z are set of covariates and W has the extreme value distribution. Given

transformationsy = 1/o .1 = exp(—u /o). 8 = —a/owe have a Weibull model with baseline hazard of
hixlz) = (A7) exp (BT 2) ©)

1.7 The Coxph Function
The Cox proportional-hazards regression model is fit in R with the coxph function (located in the survival
package):
> library(survival)
> args(coxph)
function (formula, data, weights, subset, na.action, init, control,
ties = c(""efron”, "breslow", "exact"), singular.ok = TRUE,
robust = FALSE, model = FALSE, x = FALSE, y = TRUE, tt, method = ties,

)
Most of the arguments to coxph, including data, weights, subset, na.action, singular. ok, model, x and y, are

familiar from Im. The formula argument is a little different. The right-hand side of the formula for coxph is the
same as for a linear model. The left-hand side is a survival object, created by the Surv function. In the simple
case of right-censored data, the call to Surv takes the form Surv(time, event), where time is either the event time
or the censoring time, and event is a dummy variable coded 1 if the event is observed or O if the observation is
censored.

Among the remaining arguments to coxph: init (initial values) and control are technical arguments, method
indicates how to handle observations that have tied (i.e., identical) survival times. The default "efron” method is
generally preferred to the once-popular "breslow" method; the "exact" method is much more computationally
intensive. If robust is TRUE, coxph calculates robust coefficient-variance estimates. The default is FALSE,

unless the model includes non-independent observations, specified by the cluster function in the model formula.
I1. METHOD

This study tested 5mm epoxy encapsulated AlGalnP LEDs, a type of red LED, which were operated in a
specially designed heat chamber. The data are analyzed in three stages. First, the data are presented in a
luminosity scattering study considering three suppliers; also the data degradation pathway is presented. Second,
OpenBUGS regression coefficients are generated and failure time’s 30% degradation is estimated. Finally, the
data from the accelerated life test are analyzed

First, following the method of E. Hong (2004) [11], three groups of 6 LEDs 5mA 1.5 V were exposed to 80 °C
for 1000 hours. Readings are made every 144 hours for 6 days to standardize test conditions. Brightness is
measured in Lux. Second LED sets were exposed to 35, 45 and 55 °C and the data is presented next:

> d.1<- read.table("tfb2.csv", header=TRUE, sep=",")
> head(d.1)
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temp volt time status maker
1 29 1104160 1
2 30 1113984
3 30 1184002
4 31 1123931
5 32 106 4019
6 30 104 4002

o B, O O - -

2
2
2
1
1

> tail(d.1)
temp volt time status maker
85 49 1152782 0 1
86 52 117 2893
87 53 1132776
88 52 1032944
89 53 119 2860
90 53 109 2906

e

2
1
1
2
1

Where:temp: actual temperature in degrees Celsius, volt: actual operating voltage, time: recorded time in hours,
status: failure = 1 and censored = 0, maker: diode manufacturer
> library(survival)

> ¢.1<-coxph(Surv(time, status) ~temp + volt + maker,data=d.1)

> summary(cox1)

Call:

coxph(formula = Surv(time, status) ~ temp + volt + maker, data = d.1)
n= 90, number of events= 69

coef exp(coef) se(coef)  z Pr(>|z|)

temp 0.32248 1.38055 0.04114 7.838 4.55e-15 ***

volt -0.01028 0.98978 0.02110-0.487 0.626

maker 0.29970 1.34946 0.25143 1.192 0.233

Signif. codes: 0 “****0.001 “*** 0.01 “** 0.05 0.1 °’ 1

exp(coef) exp(-coef) lower .95 upper .95

temp 1.3805 0.7243 1.2736 1.496

volt 0.9898 1.0103 0.9497 1.032

maker 1.3495 0.7410 0.8244 2.209

Concordance= 0.857 (se =0.041)

Rsquare= 0.736 (max possible=0.996 )

Likelihood ratio test= 120 on 3 df, p=0

Wald test =61.56 on 3df, p=2.723e-13

Score (logrank) test = 106.5 on 3 df, p=0
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The column marked z in the output records the ratio of each regression coefficient to its standard error, a Wald

statistic which is asymptotically standard normal under the hypothesis that the corresponding £ is 0. The

covariates temp and maker have highly statistically significant coefficients, while the coefficient for volt is

marginally significant.

The exponentiated coefficients in the second column of the first panel (and in the first column of the second

panel) of the output are interpretable as multiplicative effects on the hazard. Thus, for example, holding the

other covariates constant, one degree Celsius additional increases the hazard of failure by a factor

ofeft = 1.3805,

The likelihood-ratio, Wald, and score chi-square statistics at the bottom of the output are asymptotically

equivalent tests of the omnibus null hypothesis that all of the fs are 0. In this instance, the test statistics are in

close agreement.
The next R commander plot Fig. 1:
> plot(survfit(c.1), ylim=c(0.7, 1), xlab="Hours",ylab="Proportion failure")
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Figure 1: Estimated Survival Function 5(t) for the Cox Regression

Next we will fit the model k(tlrx} = 1 exp(Fmaker) where maker =
> sr<-survreg(Surv(time, status)~maker, data=d.1, dist="exponential™)
> summary(sr)
Call:
survreg(formula = Surv(time, status) ~ maker, data = d.1, dist = "exponential™)
Value Std. Error  z p
(Intercept) 8.44138  0.382 22.0756 5.43e-108
maker  -0.00787  0.241-0.0327 9.74e-01
Scale fixed at 1
Exponential distribution
Loglik(model)=-650.6 Loglik(intercept only)=-650.6
Chisg= 0 on 1 degrees of freedom, p=0.97

Number of Newton-Raphson Iterations: 3

1. 2 is a maker indicator:
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We have to transform this output to interpret it in the proportional hazards setting
1 = exp (—(Intercept) ) = exp (—8.44138) = 0.00021and § = coefficient for maker = —0.00787.

Therefore:
hr(maker = 2:maker = 1) = exp(f) = exp(—0.00787) = 0.092
h(t|maker = 2) = Lexp(28) = 0.000206
h(t|maker = 1) = lexp(8) = 0.000208
The PH regression model for a Weibull distribution is defined as h(t]X) = ayt?~* exp(X8]}. For our example,
this becomes h{£|X) = ayt? ! explimaker x g1
> sw=survreg(Surv(time, status)~maker , data=d.1, dist="weibull")
> summary(sw)
Call:
survreg(formula = Surv(time, status) ~ maker, data = d.1, dist = "weibull™)
Value Std. Error  z p
(Intercept) 8.2684 0.0455 181.577 0.00e+00
maker  -0.0109 0.0287 -0.381 7.03e-01
Log(scale) -2.1279 0.1015 -20.963 1.42e-97
Scale=0.119
Weibull distribution
Loglik(model)=-546.7 Loglik(intercept only)=-546.7
Chisg=0.14 on 1 degrees of freedom, p= 0.7
Number of Newton-Raphson Iterations: 7 n=90
Where:¥ = 1/5cale = 1/0.119 = 8.40, a = exp(—(Intercept) /) = exp(—8.2684/8.40) = 0.374,
B8 = —coefficient for maker % ¥ = 0.0109,/0.119 = 0.092 and
hit|maker) = eyt? explmaker x f) = 0.374 x 3.40+™ exp (0.092maker) .

Using our data set, we fit the following Weibull regression model with volt and maker and predictors:
> sw2=survreg(Surv(time, status)~volt+maker , data=d.1, dist="weibull")
> summary(sw2)
Call:
survreg(formula = Surv(time, status) ~ volt + maker, data = d.1,
dist = "weibull™)
Value Std. Error  z p
(Intercept) 8.4664 0.24826 34.103 6.65e-255
volt -0.0018 0.00222 -0.813 4.16e-01
maker  -0.0110 0.02859 -0.386 6.99e-01
Log(scale) -2.1314 0.10127 -21.047 2.46e-98
Scale=0.119
Weibull distribution
Loglik(model)=-546.3 Loglik(intercept only)=-546.7
Chisg= 0.8 on 2 degrees of freedom, p= 0.67
Number of Newton-Raphson Iterations: 7 n=90
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The column labeled z is the Wald statistic {ﬁj,"fe{ﬁj}} for testingH,:8; = 0. Parameter estimates are

interpreted the same way as in parametric models, except no shape parameter is estimated because we are not
making assumptions about the shape of the hazard, for example:
hit|volt, maker) = h(t) exp(B, x volt + B, x maker)
> cphl=coxph(Surv(time, status)~volt+maker , data=d.1)
> summary(cphl)
Call:
coxph(formula = Surv(time, status) ~ volt + maker, data = d.1)
n= 90, number of events= 69
coef exp(coef) se(coef)  z Pr(>|z|)

volt 0.01547 1.01559 0.01887 0.820 0.412
maker 0.09106 1.09533 0.24328 0.374 0.708

exp(coef) exp(-coef) lower .95 upper .95
volt 1.016 0.9847 0.9787 1.054
maker 1.095 0.9130 0.6799 1.765
Concordance= 0.551 (se = 0.041)
Rsquare= 0.009 (max possible=0.996)
Likelihood ratio test= 0.82 on 2 df, p=0.665
Wald test =0.82 on 2 df, p=0.6623
Score (logrank) test =0.83 on 2 df, p=0.6616

V. DISCUSSION

As mentioned, tests for the proportional-hazards assumption are obtained from cox.zph, which computes a test
for each covariate, along with a global test for the model as a whole:
> cox.zph(cphl)

rho chisg p
volt -0.1346 1.034 0.309
maker -0.0519 0.184 0.668
There is, therefore, strong evidence of proportional hazards for age, while the global test (on 3 degrees of
freedom) is quite statistically significant. These tests are sensitive to linear trends in the hazard.Plotting the
object returned by cox.zph produces graphs of the scaled Schoenfeld residuals against transformed time (see
Fig.2):
> par(mfrow=c(1, 2))
> plot(cox.zph(cphl))
Interpretation of these graphs is greatly facilitated by smoothing, for which purpose cox.zph uses a smoothing
spline, shown on each graph by a solid line; the broken lines represent + 2-standard-error envelopes around the
fit. Systematic departures from a horizontal line are indicative of non-proportional hazards. The assumption of

proportional hazards appears to be supported for the covariates maker.
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Figure 2: Plots of Scaled Schoenfeld Residuals Against Transformed Time for Each Covariate
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