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ABSTRACT 

Survival analysis examines and models the time it takes for events to occur, termed survival time. The Cox 

proportional-hazards regression model is the most common tool for studying the dependency of survival time on 

predictor variables. This paper describes the Cox regression model, and explains how to use the survival 

package in R to estimate Cox regressions. Survival estimates are an essential compliment to multivariable 

regression models for time-to-event data, both for prediction and illustration of covariate effects. They are easily 

obtained under the Cox proportional-hazards model. Finally the data from the accelerated life test are analyzed. 
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I. INTRODUCTION  

 

Survival analysis examines the time it takes for events to occur. The prototypical such event is death, from 

which the name "survival analysis" and it will focus on analyzing the distribution of survival times. The survival 

modeling examines the relationship between survival and one or more predictors, usually termed covariates in 

the survival-analysis literature. The survival package in R contains the commonly employed tools of survival 

analysis [1], [2]. 

Let  represent survival time. We regard  as a random variable with cumulative distribution 

function . And probability density function . The survival function  is 

the complement of the distribution function, A fourth representation of the 

distribution of survival times is the hazard function, which assesses the instantaneous risk of demise at time t, 

conditional on survival to that time: 

 

(1) 

A feature of survival data is censoring, the most common form of which is right-censoring: Here, the period of 

observation expires, or an individual is removed from the study, before the event occurs. Censoring complicates 

the likelihood function, and hence the estimation, of survival models. 

Survival analysis typically examines the relationship of the survival distribution to covariates. For example, a 

parametric model based on the exponential distribution may be written 

as or, equivalently . 

The constant in this model represents a kind of log-baseline hazard, since  or  when all 

of the ‟s are 0. The Cox model leaves the baseline hazard function unspecified 
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or, 

equivalently .This model is semi-parametric because while the 

baseline hazard can take any form, the covariates enter the model linearly.  

 

1.1 The Proportional-Hazards Model 

Consider, now, two observations  and  that differ in their -values, with the corresponding linear 

predictors  and . The hazard ratio for these 

two observations, 

 

(2) 

is independent of time t. Consequently, the Cox model is a proportional-hazards model. Even though the 

baseline hazard is unspecified, the Cox model can still be estimated by the method of partial likelihood. In his 

1972 paper [3], Cox introduced two key ideas: a simple model for the relationship between covariates and the 

hazard of experiencing an event, and a partial-likelihood approach to estimate the model parameters. 

 

1.2 The Hazard of Failure 

The Cox proportional-hazards regression is thoroughly described elsewhere ([4], [5], [6] and [7]).  Following 

Fox (2011) [8], for subjects  let  denote the failure time,  denote the censoring time, and  

represent a counting process such that (  where  is the indicator function taking value 1 if 

event  occurs and 0 otherwise. A subject is at risk until they experience an event or are censored. Indicate 

whether the th subject is at risk at time , i.e. , . Let  denote a predictor of interest; 

and  a ( ) vector of additional covariates, where  and  are independent given  and . The failure 

time  is not available for all subjects, but instead min ,  and  are observed. The hazard of 

failure  is related to the covariates by: 

 

 (3) 

 

1.3 Accelerated Failure time Models 

The accelerated failure time (AFT) model specifies that predictors act multiplicatively on the failure time 

(additively on the  of the failure time). The predictor alters the rate at which a subject proceeds along the 

time axis. The model is: 

 
(4) 

where  is any standard survival distribution and  is called the scale parameter. 

     We can also write this relationship as: 

 (5) 

where  is a random variable from the  distribution. 

     Assumptions: 

• The true form of  is correctly specified. 
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• Each  affects  linearly (assuming no interactions). 

•  is a constant, independent of . 

The exponential and Weibull distributions are the only two distributions that can be used to describe both PH 

and AFT models. These models can be fit in R using the survreg() function. 

 

1.4 Exponential Proportional Hazards Regression 

The exponential survival regression model can be expressed as  

 (4) 

The regression can also be written as If we replace  with , then 

 (5) 

Therefore, we can think of as a transformed intercept term. 

 

1.5 Weibull and Extreme Value Distributions 

The Weibull distribution is often used for product life [9]. It is also used to describe the life of electronic 

components in accelerated tests. According to extreme value theory, it may describe a “weakest link” product. 

Such a product consists of many parts from the same life distribution, and the product fails with the first part 

failure. 

The population fraction failing by age  is . The shape parameter  and the scale 

parameter  are positive. For a Weibull distribution, the population fraction surviving age  

is , the probability density is , and for the hazard 

function, we have  

The extreme value distribution is an analytic methods for Weibull data.  for a Weibull distribution has an 

extreme value distribution. The population fraction below  is . The location 

parameter is  and the scale parameter is . The extreme value reliability function 

is , the probability density is 

 and the hazard function is . 

Suppose a Weibull life distribution has shape and scale parameters   and . The  has an extreme value 

distribution with   and .The last equation shows that the spread in  is the reciprocal of . 

The Weibull parameters can be expressed as  and .   

1.6 Weibull AFT Regression Functions in R 

Weibull accelerated failure time (AFT) regression can be performed in R using the survreg function. The 

survreg fit a parametric survival regression model. These are location-scale models for an arbitrary transform of 

the time variable; the most common cases use a log transformation (in R, log computes logarithms, by default 

natural logarithms, and log10 computes common (base 10) logarithms), leading to accelerated failure time 

models. 

The results are not, however, presented in a form in which the Weibull distribution is usually given. In Therneau 

(2014) [10], accelerated failure time models are usually given by: 
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 (6) 

where  are set of covariates and  has the extreme value distribution. Given 

transformations we have a Weibull model with baseline hazard of 

 (7) 

 

1.7 The Coxph Function 

The Cox proportional-hazards regression model is fit in R with the coxph function (located in the survival 

package): 

> library(survival) 

> args(coxph) 

function (formula, data, weights, subset, na.action, init, control,  

    ties = c("efron", "breslow", "exact"), singular.ok = TRUE,  

    robust = FALSE, model = FALSE, x = FALSE, y = TRUE, tt, method = ties,  

    ...)  

Most of the arguments to coxph, including data, weights, subset, na.action, singular. ok, model, x and y, are 

familiar from lm. The formula argument is a little different. The right-hand side of the formula for coxph is the 

same as for a linear model. The left-hand side is a survival object, created by the Surv function. In the simple 

case of right-censored data, the call to Surv takes the form Surv(time, event), where time is either the event time 

or the censoring time, and event is a dummy variable coded 1 if the event is observed or 0 if the observation is 

censored.  

Among the remaining arguments to coxph: init (initial values) and control are technical arguments, method 

indicates how to handle observations that have tied (i.e., identical) survival times. The default "efron" method is 

generally preferred to the once-popular "breslow" method; the "exact" method is much more computationally 

intensive. If robust is TRUE, coxph calculates robust coefficient-variance estimates. The default is FALSE, 

unless the model includes non-independent observations, specified by the cluster function in the model formula. 

 

II. METHOD 

 

This study tested 5mm epoxy encapsulated AlGaInP LEDs, a type of red LED, which were operated in a 

specially designed heat chamber. The data are analyzed in three stages. First, the data are presented in a 

luminosity scattering study considering three suppliers; also the data degradation pathway is presented. Second, 

OpenBUGS regression coefficients are generated and failure time‟s 30% degradation is estimated. Finally, the 

data from the accelerated life test are analyzed 

First, following the method of E. Hong (2004) [11], three groups of 6 LEDs 5mA 1.5 V were exposed to 80 ℃ 

for 1000 hours. Readings are made every 144 hours for 6 days to standardize test conditions. Brightness is 

measured in Lux. Second LED sets were exposed to 35, 45 and 55 ℃ and the data is presented next: 

> d.1<- read.table("tfb2.csv", header=TRUE, sep=",") 

> head(d.1) 
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temp volt time status maker 

1   29  110 4160      1     1 

2   30  111 3984      1     2 

3   30  118 4002      0     2 

4   31  112 3931      0     2 

5   32  106 4019      1     1 

6   30  104 4002      0     1 

> tail(d.1) 

temp volt time status maker 

85   49  115 2782      0     1 

86   52  117 2893      1     2 

87   53  113 2776      1     1 

88   52  103 2944      1     1 

89   53  119 2860      1     2 

90   53  109 2906      1     1 

 

Where:temp: actual temperature in degrees Celsius, volt: actual operating voltage, time: recorded time in hours, 

status: failure = 1 and censored = 0, maker: diode manufacturer 

> library(survival) 

> c.1<-coxph(Surv(time, status) ~temp + volt + maker,data=d.1) 

> summary(cox1) 

Call: 

coxph(formula = Surv(time, status) ~ temp + volt + maker, data = d.1) 

n= 90, number of events= 69 

coef exp(coef) se(coef)      z Pr(>|z|) 

temp   0.32248   1.38055  0.04114  7.838 4.55e-15 *** 

volt  -0.01028   0.98978  0.02110 -0.487    0.626 

maker  0.29970   1.34946  0.25143  1.192    0.233 

--- 

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

exp(coef) exp(-coef) lower .95 upper .95 

temp     1.3805     0.7243    1.2736     1.496 

volt     0.9898     1.0103    0.9497     1.032 

maker    1.3495     0.7410    0.8244     2.209 

Concordance= 0.857  (se = 0.041 ) 

Rsquare= 0.736   (max possible= 0.996 ) 

Likelihood ratio test= 120  on 3 df,   p=0 

Wald test            = 61.56  on 3 df,   p=2.723e-13 

Score (logrank) test = 106.5  on 3 df,   p=0 
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III. RESULTS 

 

The column marked z in the output records the ratio of each regression coefficient to its standard error, a Wald 

statistic which is asymptotically standard normal under the hypothesis that the corresponding  is 0. The 

covariates temp and maker have highly statistically significant coefficients, while the coefficient for volt is 

marginally significant.  

The exponentiated coefficients in the second column of the first panel (and in the first column of the second 

panel) of the output are interpretable as multiplicative effects on the hazard. Thus, for example, holding the 

other covariates constant, one degree Celsius additional increases the hazard of failure by a factor 

of . 

The likelihood-ratio, Wald, and score chi-square statistics at the bottom of the output are asymptotically 

equivalent tests of the omnibus null hypothesis that all of the s are 0. In this instance, the test statistics are in 

close agreement. 

The next R commander plot Fig. 1: 

> plot(survfit(c.1), ylim=c(0.7, 1), xlab="Hours",ylab="Proportion failure") 

 

Figure 1: Estimated Survival Function for the Cox Regression 

 

Next we will fit the model  where  is a maker indicator: 

> sr<-survreg(Surv(time, status)~maker, data=d.1, dist="exponential") 

> summary(sr) 

Call: 

survreg(formula = Surv(time, status) ~ maker, data = d.1, dist = "exponential") 

Value Std. Error       z         p 

(Intercept)  8.44138      0.382 22.0756 5.43e-108 

maker       -0.00787      0.241 -0.0327  9.74e-01 

Scale fixed at 1  

Exponential distribution 

Loglik(model)= -650.6   Loglik(intercept only)= -650.6 

 Chisq= 0 on 1 degrees of freedom, p= 0.97  

Number of Newton-Raphson Iterations: 3  
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n= 90  

We have to transform this output to interpret it in the proportional hazards setting 

and . 

Therefore: 

 

 

 

The PH regression model for a Weibull distribution is defined as . For our example, 

this becomes : 

> sw=survreg(Surv(time, status)~maker , data=d.1, dist="weibull") 

> summary(sw) 

Call: 

survreg(formula = Surv(time, status) ~ maker, data = d.1, dist = "weibull") 

Value Std. Error       z        p 

(Intercept)  8.2684     0.0455 181.577 0.00e+00 

maker       -0.0109     0.0287  -0.381 7.03e-01 

Log(scale)  -2.1279     0.1015 -20.963 1.42e-97 

Scale= 0.119  

Weibull distribution 

Loglik(model)= -546.7   Loglik(intercept only)= -546.7 

 Chisq= 0.14 on 1 degrees of freedom, p= 0.7  

Number of Newton-Raphson Iterations: 7 n= 90  

Where: , , 

 and 

. 

Using our data set, we fit the following Weibull regression model with volt and maker and predictors: 

> sw2=survreg(Surv(time, status)~volt+maker , data=d.1, dist="weibull") 

> summary(sw2) 

Call: 

survreg(formula = Surv(time, status) ~ volt + maker, data = d.1,  

    dist = "weibull") 

              Value Std. Error       z         p 

(Intercept)  8.4664    0.24826  34.103 6.65e-255 

volt        -0.0018    0.00222  -0.813  4.16e-01 

maker       -0.0110    0.02859  -0.386  6.99e-01 

Log(scale)  -2.1314    0.10127 -21.047  2.46e-98 

Scale= 0.119  

Weibull distribution 

Loglik(model)= -546.3   Loglik(intercept only)= -546.7 

 Chisq= 0.8 on 2 degrees of freedom, p= 0.67  

Number of Newton-Raphson Iterations: 7 n= 90  
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The column labeled z is the Wald statistic  for testing . Parameter estimates are 

interpreted the same way as in parametric models, except no shape parameter is estimated because we are not 

making assumptions about the shape of the hazard, for example: 

 

> cph1=coxph(Surv(time, status)~volt+maker , data=d.1) 

> summary(cph1) 

Call: 

coxph(formula = Surv(time, status) ~ volt + maker, data = d.1) 

  n= 90, number of events= 69  

         coef exp(coef) se(coef)     z Pr(>|z|) 

volt  0.01547   1.01559  0.01887 0.820    0.412 

maker 0.09106   1.09533  0.24328 0.374    0.708 

      exp(coef) exp(-coef) lower .95 upper .95 

volt      1.016     0.9847    0.9787     1.054 

maker     1.095     0.9130    0.6799     1.765 

Concordance= 0.551  (se = 0.041 ) 

Rsquare= 0.009   (max possible= 0.996 ) 

Likelihood ratio test= 0.82  on 2 df,   p=0.665 

Wald test            = 0.82  on 2 df,   p=0.6623 

Score (logrank) test = 0.83  on 2 df,   p=0.6616 

 

IV. DISCUSSION 

 

As mentioned, tests for the proportional-hazards assumption are obtained from cox.zph, which computes a test 

for each covariate, along with a global test for the model as a whole: 

> cox.zph(cph1) 

           rho chisq     p 

volt   -0.1346 1.034 0.309 

maker  -0.0519 0.184 0.668 

There is, therefore, strong evidence of proportional hazards for age, while the global test (on 3 degrees of 

freedom) is quite statistically significant. These tests are sensitive to linear trends in the hazard.Plotting the 

object returned by cox.zph produces graphs of the scaled Schoenfeld residuals against transformed time (see 

Fig.2): 

> par(mfrow=c(1, 2)) 

> plot(cox.zph(cph1)) 

Interpretation of these graphs is greatly facilitated by smoothing, for which purpose cox.zph uses a smoothing 

spline, shown on each graph by a solid line; the broken lines represent  2-standard-error envelopes around the 

fit. Systematic departures from a horizontal line are indicative of non-proportional hazards. The assumption of 

proportional hazards appears to be supported for the covariates maker. 
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Figure 2: Plots of Scaled Schoenfeld Residuals Against Transformed Time for Each Covariate 
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