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ABSTRACT  

In the present investigation, we have studied the flow of Walter’s liquid B near a stagnation point with slip using 

boundary layer approximation. We obtained the approximate solution of the equation of motion by extermal 

point collocation method. We have investigated the behavior of viscoelastic liquid which impinges on a rigid 

wall with slip. The effect slip condition and effect of viscoelasticity of the liquid is studied. Velocity profiles with 

and without slip are shown in different graphs. 
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I. INTRODUCTION 

 

A stagnation point occurs when a liquid stream impinges on a wall at right angles to it and flows away radially 

in all directions. The behavior of the flow of liquids near a stagnation point is a fundamental topic in fluid 

dynamics and has attracted the attention of many researchers in last few decades due to its wide industrial and 

technical applications. This principle is applied in heat exchangers placed in a low velocity environment, 

cooling of nuclear reactors during emergency shutdown, solar central receivers exposed to wind currents, 

cooling of electronic devices by fans and many hydrodynamic processes. Authors like Howarath (1935) and 

Froessling (1940) have obtained solutions for the flow of a viscous liquid near a stagnation point. Srivastava 

(1958) has obtained an approximate solution for an axially symmetric flow near a stagnation point of a non-

Newtonian Reiner Rivlin fluid with constant coefficients of viscosity and cross viscosity adopting the Kerman 

Pohlhausen method used for the study of boundary layer equations in Newtonian fluids. Stuart (1959) studied 

the viscous flow near a stagnation point when the external flow has uniform verticity. Also Tamada (1979) 

discussed the two dimensional stagnation point flow impinging obliquely on a plane wall. Rajeswari et.al.  

(1962) used the same method and obtained approximate solutions for the two dimensional and axially 

symmetric flows near a stagnation point of Rivlin Ericksen viscoelastic liquid. Sharma (1959) has discussed the 

problem of axially symmetric flow of a Maxwell liquid near a stagnation point. Jain and Balram (1961), Jain 

(1961), Kapur and Gupta (1963) and Mishra et. al. (1972) have studied the stagnation point flow of different 

non-Newtonian fluids with and without suction at the impinging wall. Krechetmikov et. al (2002) studied the 

problem of  two dimensional and three dimensional boundary layer flow for Newtonian and non-Newtonian 
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fluids and obtained set of similar solutions in the case of steadily moving jets. Three dimensional boundary layer 

flow was studied by Kiril (2002) for the existence and smoothness of the Navier-Stokes equations. Rothorayer 

et. al. (2002) discussed the boundary layer flow through the evolution of interfacial waves on thin liquid films 

which are driven by a boundary layer and obtained the boundary layer thickness. Prandtl-Bathcelor free 

boundary layer problem was investigated by Acker (2002) who obtained an analytical solution on a convex cone 

of constant verticity. Three dimensional boundary layer flows was studied by Naceur et.al.(2002) for 

incompressible fluid through a numerical scheme. Earlier in 1964, Beard and Walter have a detailed 

investigation on viscoelastic boundary layer two dimensional flow near a stagnation point. They have shown 

that the effect of elasticity is to increase the velocity in the boundary layer and also to increase the stress on the 

solid boundary. Slip velocity and slip layer thickness in the flow of concentrated suspension was discussed by 

Soltani et.al. (1998). Derek et.al. (2002) studied the apparent fluid slip at hydrophobic micro channel wall and 

got interesting results. The problem of stagnation point flow with slip appears in some applications. Wang 

(2003) studied the stagnation point flow of viscoelastic fluids with slip. Labropulu et. al. (2004) studied the 

steady two dimensional stagnation point flow of non-Newtonian Walter’s B liquid with slip. Bhatacharya et.al. 

(2011) analyzed the effect of partial slip on steady boundary layer stagnation point flow of an incompressible 

fluid and heat transfer towards a shrinking sheet. Rosali at.al. (2014) analyzed the effect of unsteadiness on 

mixed convection boundary layer stagnation point flow over a vertical flat surface embedded in a porous 

medium. Mabood et. al. (2015) worked on the heat and mass transfer of MHD stagnation point flow towards a 

permeable stretching surface. Madhu et.al. (2015) made an exhaustive study of MHD mixed convection 

stagnation point flow of a power law non-Newtonian Nano fluid towards a stretching surface with radiation and 

heat source/ sink. 

Our aim in the present paper is to study the flow of Walter’s liquid B near a stagnation point with slip using 

boundary layer approximation by extremal point collocation method. This problem appears in some applications 

where a thin film of oil is attached to the plate or when the wall is coated with special coating such as a thick 

monolayer of a type of lubricant. Flows in the slip flow region is taken as  

                       
n

u
Au t

pt



                                                                                                                                 [1]             

Where tu  is the tangential velocity component, n  is normal to the plate and pA  is the slip coefficient. In the 

present analysis, we investigate the behavior of viscoelastic liquid which impinges on a rigid wall with slip. The 

liquid impinges on the wall orthogonally. The effect of slip condition and effect of viscoelasticity of the liquid is 

studied. In a way the present paper is an extension of the work done by Wang (2003). 

 

II. BASIC EQUATIONS 

 

The constitutive equations for flow of the viscoelastic liquid model considered here are given by 

            
ijijij ekep 

00 22                                                       [2]                                                                                   

Where 
ijp  is the stress tensor, 0 is the coefficient of viscosity, 0k   is the elastic parameter of the liquid and  

ije  is the rate of strain tensor.  
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The equation of motion and continuity are given by 
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ij
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ij
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


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
                                                                                                              [4] 

And 0, 
v                                                                                                                                                 [5] 

Where     s the density of the medium and  p  is an arbitrary isotropic pressure. 

 

III. BOUNDARY LAYER EQUATIONS 

 

We consider the steady state two dimensional flow parallel to y-axis at infinite impinging on a flat wall placed 

along y=0. The flow divides it into two streams on the wall and proceeds in two opposite directions. The 

velocity components in the x and y directions are considered as  

),( yxuu  , ),( yxvv  , 0w                       [6] so as to satisfy the equation of continuity.  

 The equations of motion in a steady flow with the stress strain rate relation given by [2] 

are
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Where  




 0*

0
0 ,

k
k   

The equation of continuity reduces to  

0









y

v

x

u
                                                                                                                                          [9] 

Now within the boundary layer u ,
x

u




, 

2

2

x

u




, 

x

p




 are assumed to be  1o  and y to be in the order  , where 

 is the thickness of the boundary layer near a solid boundary at 0y . From the equation of continuity [9], 

we have 
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           ov   

In order that viscous, viscoelastic and inertial terms in the equation of motion shall be the same order of 

magnitude, it is necessary that 

                       2ov   and  2*

0 ok   

Also the change of pressure across the boundary layer is  2o  and the pressure gradient term in [6] can 

therefore be obtained from the flow just outside the boundary layer. In this region, under the steady flow 

condition, we have 

x

U
U

x

p












1
                                                                                                                                        [10] 

Where  U  is the mainstream velocity. 

Thus the reduced boundary equation is  
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From the equation of continuity [9], it is possible to define a stream function   as follows. 

                
y

u






 and 

x
v




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
                                                                                                            [12] 

The approximate form of   for the present problem is  

                  xfU1                                                                                                                          [13]  

Where     yU  /1                                                                                                                               [14] 

From the above we see that 

                 yUfxUu /11
                                                                                                                 [15] 

The boundary conditions to be satisfied on the velocity component are  

  















yyxUuy

x
uy

,,:

0,0:0





                                                                                                                [16] 

The slip condition in equation-[1] is  

2

2

yy 






 



 Where  pA  

Here    has the unit of inverse time. 

A search for solution of [11] in which the velocity profiles are similar in different sections reveals that the only 

possible form of U under these conditions is  

               xUU 1                                                                                                                                             [17] 
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Where  1U  is a constant. 

Substituting    from [12] and U  from [17], equation-[11] reduces to 

    021 21*

0

2  fffff
U

kffff iv


 

Or     021 22  fffffkffff iv
                                                                        [18] 

Where the non dimensional  k  is positive and given by 


1*

0

U
kk   

The corresponding boundary conditions are  
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fff 
                                                                                                                     [19] 

 

IV. SOLUTION OF THE PROBLEM 

 

In this section we shall obtain an approximate solution for the equation [18] by using extremal point collocation 

method.  We use for  f  an approximate function  g  satisfying the boundary condition [19]. Thus the 

approximate function  g  can be written as  

          3

2

2

1 32211   eeaeeaegf                                           [20] 

The boundary conditions are  
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Substituting [20] in equation-[18], we get 

   22 21, gggggkgggga iv

p
                                                                       [21] 

Where  
pa,  represents the defect in the differential equations and is a function of two arbitrary parameters 

1a and 2a . 

Let us take the approximate extremal points at  3.1,5.0,0.0 210   . After obtaining values of  

     
ppp aaa ,3.1&,5.0,,0  , we form a set of equations for different values of k  from 

   
    








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0,5.0,0

pp

pp

aa

aa
                                                                                                                         [22] 

Hence we get a set of values of 1a and 2a  corresponding to the above set of equations and then we substitute 

these values in the defect function [21]. Then we equate the differential coefficient with respect to    to zero, 

i.e. 
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  0 
d

d
                                                                                                                                                [23] 

Solving equation-[23], we get the corrected values of 0 , 1  and 2 . After putting the corrected values of   

and then adopting the same method as we adopted in obtaining equations involving 1a and 2a . Then solving 

these equations, we get the corrected values of 1a and 2a . 

k  
1a  2a  

0 0.5246647 -0.1365591 

0.05 0.6079025 -0.1542050 

0.1 0.7045973 -0.1743611 

0.15 0.8205665 -0.1981024 

0.20 0.9626898 -0.2263059 

Putting these values of 1a and 2a  in equation-[20], we get the solutions for equation-[20]. 

It is also interesting to determine the effect of elasticity of the stress on the solid boundary. We know 
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Within the boundary layer, retaining only the terms of highest order, we have 
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On the solid boundary 0y , we have 

  kUP
yxy 1372.12325.12/3

1

2/1

0



                                                                                             [26] 

The stress on the solid boundary is therefore increased by the presence of elasticity of the liquid. 

If   is the stream function, then 

 


xfU
y

u 1



                                                                                                                                           [27] 

 


fU
x

v 1



                                                                                                                           [28] 

So we take  

    xfUyx 1,                                                                                                                                     [29] 

The stream function   is given by 

 



 xf

U


1

                                                                                                                                     [30] 
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V. DISCUSSION OF RESULTS 

 

Figure-1 shows the effect of elasticity of the liquid on the velocity component. An examination of this figure 

shows that the ratio of velocity in the boundary layer to the mainstream velocity Uu /  gradually increases as   

goes on increasing. At about 6.2 ,  the value of Uu /  approaches to unity. The presence of elasticity in the 

liquid increases the velocity in the boundary layer. 

Details of the function f  are given in table-1. The values of fff &,  are in the agreement with those given 

by Howarth. The stream function is given by   xf . Figure-2 furnishes the flow pattern near a stagnation 

point for 05.0&0 *

0

*

0  kk . We find the effect of 
*

0k  is to flatten the velocity profile. Figure-3 shows the 

profiles of f   for 0  and for various values of 
*

0k  and figure-4 shows the profiles of f   for 1  and for 

different values of
*

0k . Here we see that as the elasticity of the fluid increases, the velocity near the wall increases 

and as the slip parameter increases, the velocity near the wall increases as well. 

Table-1 

  f  f   f   f   *

0k  

0 0.0000 

0.0000 

0.0000 

0.0000 

1.2325 

1.2895 

-1.0000 

-1.0759 

0 

0.05 

0.2 0.0234 

0.0243 

0.2266 

0.2346 

1.0346 

1.0764 

-0.9728 

-1.0462 

0 

0.05 

0.4 0.0883 

0.0918 

0.4146 

0.4313 

0.8463 

0.8741 

-0.9028 

-0.9696 

0 

0.05 

0.6 0.1868 

0.1942 

0.5665 

0.5874 

0.6753 

0.6905 

-0.8050 

-0.8628 

0 

0.05 

0.8 0.3126 

0.3244 

0.6860 

0.7090 

0.5251 

0.5305 

-0.6936 

-0.7401 

0 

0.05 

1.00 0.4593 

0.4760 

0.7780 

0.7912 

0.3982 

0.3938 

-0.5778 

-0.6128 

0 

0.05 

1.20 0.6223 

0.6553 

0.8468 

0.8673 

0.2939 

0.2815 

-0.4637 

-0.4953 

0 

0.05 

1.40 0.7968 

0.8221 

0.8968 

0.9165 

0.2112 

0.1985 

-0.3638 

-0.3774 

0 

0.05 
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