
 

726 | P a g e  

 

NUMERICAL INTEGRATION (QUADRATURE) 

METHOD FOR STEADY –STATE CONVECTION-

DIFFUSION PROBLEMS 

K. Sharath Babu
1
, N. Srinivasacharyulu

2
, J.V. Brammam

3 
1
Professor of Mathematics, Malla Reddy Engineering College (Autonomous),  Maisammaguda , 

Secunderabad (India)  

2
Associate Professor of Mathematics, National Institute of Technology, Warangal 

3
Research Scholar, Krishna University, Machilipatnam, Krishna District, Andhra Pradesh (India) 

 

ABSTRACT 

In this paper, a numerical integration method is presented for solving a general steady-state convection 

problem or singularly perturbed two-point boundary value problem.  The governing second-order differential 

equation is replaced by an approximate first-order differential equation with a small deviating argument.  Then 

the Simpson one-third formula is used to obtain the three term recurrence recurrence relationship.  The 

proposed method is iterative on the deviating argument.  To test and validity of this method  we have solved 

several model linear problems with left-end boundary layer or right-end boundary layer or an internal layer 

and offered the computational results.   

 

Keywords:  Singular Perturbation; Boundary Layer; Peclet Number; Two-Point Boundary Value 

Problem.. 

 

I. INTRODUCTION 

 

Convection-diffusion problems occur very frequently in the fields of science and engineering such as fluid 

dynamics, specifically the fluid flow problems involving large Reynolds number and other problems in the great 

world of fluid motion.  The numerical treatment of singular perturbation problems is far from trivial because of 

the boundary layer behavior of the solution.  However, the area of convection-diffusion problems is a field of 

increasing interest to applied mathematicians.   

The survey paper by Kadalbajoo and Reddy [ ], gives an intellectual outline of the singular perturbation 

problems and their treatment starting from Prandtl’s paper [ ] on fluid dynamical boundary layers.  This survey 

paper will remain as one of the most readable source on convection-diffusion or singular perturbation problems.   

For a detailed theory and analytical discussion on singular perturbation problems one may refer to the books and 

high level monographs: O’Malley [ ], Nayfeh [] , Bender and Orszag [ ] , Kevorkian and Cole.   

In this paper , a numerical integration method is presented for solving general singularly perturbed two-point 

boundary value problems .The main advantage  of this method is that it does not require very fine mesh size.  
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The inventive second-order differential equation is replaced by an approximate first-order differential equation 

with a small differing argument.  Then , the Simpson one-third formula is used to obtain the three term 

recurrence relationship.  Thomas Algorithm is applied to solve the resulting tridiagonal algebraic system of 

equations.  The proposed method is iterative on the deviating argument.  The method is to be repeated for 

different choices of the deviating argument until the solution profile stabilizes.  To examine the applicability of 

the proposed method, we have solved several model linear problems with left-end boundary layer or right –end 

boundary layer or an internal layer  and presented the numerical results.  It is observed that the numerical 

integration method approximates the exact solution extremely well. 

 

II. NUMERICAL INTEGRATION METHOD  

 

For the sake of convenience we call our method the ‘ Numerical Integration Method’.  To set the stage for the 

numerical integration method , we consider the following Governing linear Convection-diffusion ( singularly 

perturbed two-point boundary value problem: 

(1)                                                                    1x0  ; f(x)  b(x)y(x) (x)y a(x)  (x)y '''   

    With y(0) =α  and y(1) = β                                                                                                                              (2)  

Where   is a small positive parameter called diffusion parameter which lies in the interval 0<  1 ;  α and β 

are given constants; a(x) , b(x) and f(x) considered to be sufficiently continuously differentiable functions in 

[0,1]. Furthermore , we assume that a(x) ≥ M >  0 throughout the interval [0,1], where M is some positive 

constant.  This assumption merely implies that the boundary layer will be in the neighborhood of x=0. 

Let δ be a small positive deviating argument (0<  δ ≤ 1).  By applying Taylor series expansions in the 

neighborhood of the point x, we have  
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And consequently, Eq. (1) is replaced by the following first-order differential equation with a small deviating 

argument.   
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(4) Can be re-written as  

(5)                                                                   1xfor  r(x) y(x) q(x) )-y(x p(x) )('  xy

 

Where 
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We now divide the interval [0,1] in to N equal parts with mesh size h, i.e., h=1/N and xi = ih for  i= 

1,2,3…….N.  Integrating equation (5) in [ xi-1,xi+1] we get 
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By making use of the Newton-Cotes formula when n=2  i.e. applying Simpson’s 1/3 rule approximately, we 

obtain  
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Again by means of Taylor’s series expansion, we have  
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and then by approximating )(y ' x  by Linear Interpolation method we get 
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Hence making use of (11),(12),(13) (10) can be written as 
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can be written in the standard form as  
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Here yi =y(xi ), pi =p(xi), qi =q(xi) and ri =r(xi).  Equation (16) gives a system of (N-1) equations with (N+1) 

unknowns y0 to yN .  The two given boundary conditions ( ) together with these (N-1) equations are then 

sufficient to solve for the unknowns y0 , yN.   The solution of the Tri-diagonal system (15) can be obtained by 

using an efficient algorithm called ‘Thomas Algorithm.  In this algorithm we set a difference relation of the 

form  

 (20)                                                                                                                          T  y W i1ii  iy

 

Where Wi  and Ti  corresponding to W(xi ) and T (xi ) are to be determined from (20) we have  
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Substituting (21) in  (15) we get  
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By compararing (20) and (22) , we can get 
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To solve these recurrence relations for i=1,2,3,…….N-1; we need to know the initial conditions for W0 and T0 . 

This can be done by considering (2)  

 

(25)                                                                          0100 TyWy    

If we choose  W0=0, then T0 = .  With these initial values , we compute sequentially Wi and Ti for 

i=1,2,3,….N-1;from (24) and (25) in the forward process and then obtain yi  in the backward process from (20) 

using (2). 

Repeat the numerical scheme for different choices of   (deviating argument, satisfying the 

conditions )10(   , until the solution profiles do not differs significantly from iteration to iteration.  For 

computational point of view, we use an absolute error criterion, namely 

 

 

Where 
mxy )(  is the solution for the mth iterate of , and   is the prescribed tolerance bound.   

 

III. LINEAR PROBLEMS 

  

Here we are considered the applicability of the numerical integration method, we have applied it to linear 

singular perturbation problems with left-end boundary layer.  These examples have been chosen because they 

have been widely discussed in the literature and because approximate solution is available for comparison. 

Example 1. 

Consider the following homogeneous Singular value perturbation problem from Kevorkian and Cole [6, 

p.33,Eqs.(2.3.26) and ( 2.3.27)] with α =0: 

))exp(-1/-(1

))exp(-x/-(1
  y(x)
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1 y(1) and 0y(0) with 1x0  0, )()( '''
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The computational results are presented in Table 1(a) and (b) for  = 10-3, 10-4 respectively. 

Table 1 Computational Result for Example 1 

X y(x)   Exact 

(26)                                                     1x0 , )()( 1  mm xyxy
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solution 

=0.001,h=0.01 =0.008 =0.009 =0.007  

0.00 0.00000000 0.00000000 0.00000000 0.00000000 

0.02 0.9876486 0.9899944 0.9917358 1.0000000 

0.04 0.9998419 0.9998944 0.9999319 1.0000000 

0.06 0.9999925 0.9999934 0.9999995 1.0000000 

0.08 0.9999945 0.9999945 1.0000000 1.0000000 

0.10 0.9999946 0.9999948 1.0000000 1.0000000 

0.20 0.9999954 0.9999952 1.0000000 1.0000000 

0.40 0.9999964 0.9999964 1.0000000 1.0000000 

0.60 0.9999976 0.9999976 1.0000000 1.0000000 

0.80 0.9999988 0.9999988 1.0000000 1.0000000 

1.00 1.00000000 1.00000000 1.0000000 1.0000000 

(b) = 10
-4 

 and h= 0.01 

 

0.00 0.00000000 0.00000000 0.00000000 0.00000000 

0.02 0.9998016 0.9998477 0.9998792 1.0000000 

0.04 0.9999999 1.0000000 1.0000000 1.0000000 

0.06 1.0000000 1.0000000 1.0000000 1.0000000 

0.08 1.0000000 1.0000000 1.0000000 1.0000000 

0.10 1.0000000 1.0000000 1.0000000 1.0000000 

0.20 1.0000000 1.0000000 1.0000000 1.0000000 

0.40 1.0000000 1.0000000 1.0000000 1.0000000 

0.60 1.0000000 1.0000000 1.0000000 1.0000000 

0.80 1.0000000 1.0000000 1.0000000 1.0000000 

1.00 1.0000000 1.0000000 1.0000000 1.0000000 

 

Example 2  

Consider the following homogeneous Spp from Bender and Orsag[2,p.480. problem 9.17] 

with α =0 : 

 
bygiven  issolution  exact  The

1 y(1) and 0y(0) with 1x0  0, )()()( '''  xyxyxy
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Table 2 Computational Results for Example 2 . 

X y(x)   Exact 

solution 

=0.001,h=0.01 =0.008 =0.009 =0.007  

0.00 1.0000000 1.0000000 1.0000000 1.0000000 

0.02 0.3834784 0.3819605 0.3808348 0.3756784 

0.04 0.3834410 0.3833556 0.3832939 0.3832599 

0.06 0.3910826 0.3910290 0.3909866 0.3909945 

0.08 0.3989720 0.3989188 0.3988770 0.3988851 

0.10 0.4070216 0.4069688 0.4069269 0.4069350 

0.20 0.4497731 0.4497210 0.4496799 0.4496879 

0.40 0.5492185 0.5491707 0.5491330 0.5491404 

0.60 0.6706514 0.6706123 0.6705816 0.6705877 

0.80 0.8189330 0.8189092 0.8188905 0.8188942 

1.00 1.0000000 1.0000000 1.0000000 1.0000000 
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