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ABSTRACT

In this paper, a numerical integration method is presented for solving a general steady-state convection
problem or singularly perturbed two-point boundary value problem. The governing second-order differential
equation is replaced by an approximate first-order differential equation with a small deviating argument. Then
the Simpson one-third formula is used to obtain the three term recurrence recurrence relationship. The
proposed method is iterative on the deviating argument. To test and validity of this method we have solved
several model linear problems with left-end boundary layer or right-end boundary layer or an internal layer
and offered the computational results.

Keywords: Singular Perturbation; Boundary Layer; Peclet Number; Two-Point Boundary Value

Problem..
I. INTRODUCTION

Convection-diffusion problems occur very frequently in the fields of science and engineering such as fluid
dynamics, specifically the fluid flow problems involving large Reynolds number and other problems in the great
world of fluid motion. The numerical treatment of singular perturbation problems is far from trivial because of
the boundary layer behavior of the solution. However, the area of convection-diffusion problems is a field of
increasing interest to applied mathematicians.

The survey paper by Kadalbajoo and Reddy [ ], gives an intellectual outline of the singular perturbation
problems and their treatment starting from Prandtl’s paper [ ] on fluid dynamical boundary layers. This survey
paper will remain as one of the most readable source on convection-diffusion or singular perturbation problems.

For a detailed theory and analytical discussion on singular perturbation problems one may refer to the books and
high level monographs: O’Malley [ ], Nayfeh [], Bender and Orszag [ ], Kevorkian and Cole.

In this paper , a numerical integration method is presented for solving general singularly perturbed two-point

boundary value problems .The main advantage of this method is that it does not require very fine mesh size.
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The inventive second-order differential equation is replaced by an approximate first-order differential equation
with a small differing argument. Then , the Simpson one-third formula is used to obtain the three term
recurrence relationship. Thomas Algorithm is applied to solve the resulting tridiagonal algebraic system of
equations. The proposed method is iterative on the deviating argument. The method is to be repeated for
different choices of the deviating argument until the solution profile stabilizes. To examine the applicability of
the proposed method, we have solved several model linear problems with left-end boundary layer or right —end
boundary layer or an internal layer and presented the numerical results. It is observed that the numerical
integration method approximates the exact solution extremely well.

I1. NUMERICAL INTEGRATION METHOD

For the sake of convenience we call our method the ¢ Numerical Integration Method’. To set the stage for the

numerical integration method , we consider the following Governing linear Convection-diffusion ( singularly

perturbed two-point boundary value problem:

ey () +a®) y (¥ +bXy() =f(x); 0<x<1 (1)
With y(0) =a and y(1) =B (2)

Where ¢ is a small positive parameter called diffusion parameter which lies in the interval 0<g <1; o and

are given constants; a(x) , b(x) and f(x) considered to be sufficiently continuously differentiable functions in

[0,1]. Furthermore , we assume that a(x) > M > 0 throughout the interval [0,1], where M is some positive

constant. This assumption merely implies that the boundary layer will be in the neighborhood of x=0.

Let 6 be a small positive deviating argument (0< 6 < 1). By applying Taylor series expansions in the

neighborhood of the point x, we have
2

. o .
y(x—é)zy(X)—5y(X)+7y (%) 3)
And consequently, Eq. (1) is replaced by the following first-order differential equation with a small deviating
argument.
5° 2

> Yy ()=y(X-6)-yX¥+5y (x)=y (x) =§[y(><-5) -y(X)+ 3y (X)]So that

W = %[y(x-a)-y(x>+5y‘(x)]+a(x) Y (%) +b() Yy =F(x ;0<x <1

= 25yY(X-0)-2ey(X+2&5y (X)+aX) y (X) 5% +b(X) y(X) 5° =57 f(X)
=[2&5 +a(X) 521y (¥) +[b(X) 6 -2s]y(X) =5°f(X) -2 £ y(X-S)

(2s-b(x) 6?)
2e0+a(x) &°

S f(X) -2 s y(x-0)
2e0+a(x) o2

=y (X)= y(x-6)+ y(®)
2¢ 25 -b(X) &2

- 5% (X
e pe e () B 0
2e0+a(X) o 2eo0+a(X) o

2 e5+a(X) o2

=y (X)= y()+ (4)
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(4) Can be re-written as
Yy (X)=pX) y(X-0)+q(X) y(X) +r(x) fors <x <1 (5)
Where
-2¢
= == 6
P(x)= 2¢5+5%a(X) ©)
2& - 52 b(X)
X)=—F—— 7
169 2¢6+06°a(X) )
o2 f(X
r(x)= —(2) 8)
2c0+0°aX)
We now divide the interval [0,1] in to N equal parts with mesh size h, i.e., h=1/N and x; = ih for i=
1,2,3.......N. Integrating equation (5) in [ X;.1,Xi+1] We get
Y( % )-¥C %)= X) y( x-8Fa( %) y( ) +r( x)]dx (9)

By making use of the Newton-Cotes formula when n=2 i.e. applying Simpson’s 1/3 rule approximately, we
obtain

h
V(%) - Y (%) = §[ P(Xi1)Y(Xiys -0) +4p (%) Y (X — ) +p(X;4 - 6)

+(Pisg + Pig) Yy —0) + Y Xy — )]+ a(Xi,1) V(X)) +a(Xi 1) Y (%) +a(Xi,1) Y(Xi.0)
+A4q(%)Y(%;) +a(Xi 1) Y(Xi 1) + 1 (Xi0) +4r(X ) + (X 4) + (X)) +1(Xi4) (10)

Again by means of Taylor’s series expansion, we have
y(x=56)=y(9-5y (x)
and then by approximating y'(x) by Linear Interpolation method we get

o [Y(Xi+1 B y(Xi-l)]

Yy —0)=y (%) -

2h
—y(x)+ y(X.l) y(X.+1) (11)
similarly
Y0 - )= 1+ D) y(x,) - yX) (12)
Y0 =9) = (1) Y(K) + 2 Y (X) (13)

Hence making use of (11),(12),(13) (10) can be written as
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h o o o o o )
Yiaa " Yia =§[ pi+l[(1_ﬁ) Yia +F yi1+4pily, _% Yia T % Yial+ P+ F) Yia _F Yil

o o ) )
+(Pig + Pi)[A - F) Yia * H yi +(1+ F) Yia — F Vi + 2051 Yia T 20, Y Ay, + 26, 41 + 21,

2p,;0 h 2h 6Py, O 4hp,
[_1_T_ —1( ) (p|+1+ pl—l)(1+ ) ql—l] Yia + [ 3 L _E Pia _T
4h, h 2p5_h
-y - P9+ B0 D+ p)a- D) - Ty
:2:[Hl+2r +1,] (14)
can be written in the standard form as
AYii+B Y +C Vi, =D; (15)
where
2p; 0 5
. = — —_ —I - -
o p: 4hp. 4hq-
B. = -1 _é . . — 1 | (17)
[ 3 3"+l 3 3
h 2pd h h
Ci=1-2p. -0+ 03, 4p - D)2 (18)
3 3
Di=%[l+1+2r +r.,] (29)
Here y; =y(X; ), pi =p(X;), q; =q(x;) and r; =r(x;). Equation (16) gives a system of (N-1) equations with (N+1)
unknowns Y, to yy. The two given boundary conditions () together with these (N-1) equations are then
sufficient to solve for the unknowns y, , yn. The solution of the Tri-diagonal system (15) can be obtained by
using an efficient algorithm called ‘Thomas Algorithm. In this algorithm we set a difference relation of the
form
Yi =Wy + T, (20)
Where W; and T; corresponding to W(x;) and T (x; ) are to be determined from (20) we have
(21)

Yia =W Y + Ty
Substituting (21) in (15) we get
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y, = Ci y AiTi—l B Di (22)
i = i+l
Bi - AiWi—l Bi - AiWi—l
By compararing (20) and (22) , we can get
C.
= ( 23)
Bi - AiWi—l
T . —D.
- AT, —Dy (24)
Bi - AiWi—l
To solve these recurrence relations for i=1,2,3,....... N-1; we need to know the initial conditions for Wy and Ty .
This can be done by considering (2)
Yo =a =Wy, +T, (25)

If we choose W,=0, then To =« . With these initial values , we compute sequentially W; and T; for
i=1,2,3,....N-1;from (24) and (25) in the forward process and then obtain y; in the backward process from (20)
using (2).

Repeat the numerical scheme for different choices of & (deviating argument, satisfying the

conditions (0 < & <1), until the solution profiles do not differs significantly from iteration to iteration. For

computational point of view, we use an absolute error criterion, namely

‘y(x)”‘*l—y(x)m‘s,o,ogxsl (26)

Where y(x)™ is the solution for the m™ iterate of 3, and p is the prescribed tolerance bound.

1. LINEAR PROBLEMS

Here we are considered the applicability of the numerical integration method, we have applied it to linear
singular perturbation problems with left-end boundary layer. These examples have been chosen because they
have been widely discussed in the literature and because approximate solution is available for comparison.
Example 1.

Consider the following homogeneous Singular value perturbation problem from Kevorkian and Cole [6,
p.33,E0s.(2.3.26) and ( 2.3.27)] with o =0:

ey (X)+y (x)=0, 0<x <1lwithy(0)=0and y(1)=1
Theexact solutionis given by
X) = (1-exp(-X/¢))

(1-exp(-1/¢))

The computational results are presented in Table 1(a) and (b) for & = 10, 10 respectively.

y(

Table 1 Computational Result for Example 1

X y(X) Exact
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solution
€=0.001,h=0.01 | 5=0.008 6=0.009 6=0.007
0.00 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000
0.02 0.9876486 | 0.9899944 | 0.9917358 | 1.0000000
0.04 0.9998419 | 0.9998944 | 0.9999319 | 1.0000000
0.06 0.9999925 | 0.9999934 | 0.9999995 | 1.0000000
0.08 0.9999945 | 0.9999945 | 1.0000000 | 1.0000000
0.10 0.9999946 | 0.9999948 | 1.0000000 | 1.0000000
0.20 0.9999954 | 0.9999952 | 1.0000000 | 1.0000000
0.40 0.9999964 | 0.9999964 | 1.0000000 | 1.0000000
0.60 0.9999976 | 0.9999976 | 1.0000000 | 1.0000000
0.80 0.9999988 | 0.9999988 | 1.0000000 | 1.0000000
1.00 1.00000000 | 1.00000000 | 1.0000000 | 1.0000000
(b) €= 10 and h=0.01
0.00 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000
0.02 0.9998016 0.9998477 0.9998792 1.0000000
0.04 0.9999999 1.0000000 1.0000000 1.0000000
0.06 1.0000000 1.0000000 1.0000000 1.0000000
0.08 1.0000000 1.0000000 1.0000000 1.0000000
0.10 1.0000000 1.0000000 1.0000000 1.0000000
0.20 1.0000000 1.0000000 1.0000000 1.0000000
0.40 1.0000000 1.0000000 1.0000000 1.0000000
0.60 1.0000000 1.0000000 1.0000000 1.0000000
0.80 1.0000000 1.0000000 1.0000000 1.0000000
1.00 1.0000000 1.0000000 1.0000000 1.0000000
Example 2

Consider the following homogeneous Spp from Bender and Orsag[2,p.480. problem 9.17]

with o =0 :

ey (X)+y (X)-y(x)=0, 0<x <1withy(0)=0and y(1)=1

Theexact solution is given by
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X +(1- eml) M2 X

m
(e 2 -1 where
y(x) = m n')l
(e 2-e 1)
-1+1+4¢
ms=— -——— ;
2¢
-1-+1+4¢
m,=———
2¢&
Table 2 Computational Results for Example 2 .
X y(X) Exact
solution

€=0.001,h=0.01 | 6=0.008 6=0.009 | 6=0.007
0.00 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000
0.02 0.3834784 | 0.3819605 | 0.3808348 | 0.3756784
0.04 0.3834410 | 0.3833556 | 0.3832939 | 0.3832599
0.06 0.3910826 | 0.3910290 | 0.3909866 | 0.3909945
0.08 0.3989720 | 0.3989188 | 0.3988770 | 0.3988851
0.10 0.4070216 | 0.4069688 | 0.4069269 | 0.4069350
0.20 0.4497731 | 0.4497210 | 0.4496799 | 0.4496879
0.40 0.5492185 | 0.5491707 | 0.5491330 | 0.5491404
0.60 0.6706514 | 0.6706123 | 0.6705816 | 0.6705877
0.80 0.8189330 | 0.8189092 | 0.8188905 | 0.8188942
1.00 1.0000000 | 1.0000000 | 1.0000000 | 1.0000000
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