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ABSTRACT

Data aggregation is important in wireless sensor ne tworks to save energy. In an untrusted environment, it
is required that this aggregation be performed in a secure manner. Cryptographic techniques to achieve
this are time-consuming, hence violate the basic principles of energy saving. This paper proposes a
mechanism based on homomorphisms to perform several aggregation functions like min, max, sum,

average in a manner which is secure yet fast.
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I. INTRODUCTION

A wireless sensor network (WSN) consists of hundreds of sensor nodes deployed over a geographical area. Ad-
vances in wireless technology have resulted in increased use of WSNSs in applications like as medical, military,
monitoring disaster areas etc and relatively newer applications like habitat monitoring and target tracking [1].
The sensor nodes are usually devices with low computation capability and limited energy and memory re-
sources. These limitations have a direct implication that communication between the nodes should be kept as
low as possible. Given the enormous amount of data that a sensor node records and communicates, data aggre-
gation techniques have to be used essentially. Data aggregation is defined as the process of aggregating the data
from multiple sensors and calculates a smaller message that summarizes the important information from a group
of sensors.
Though data aggregation is necessary to reduce communication overhead significantly, but at the same time it
may lead to certain problems when the sensors are being deployed in an untrusted environment. Security re-
quirements make encryption of data necessary, but this interferes with data aggregation. Secure data aggregation
problem is defined in [2] as efficient delivery of the summary of sensor readings that are reported to an off-site
user in such a way that ensures these reported readings have not been altered. They consider an aggregation ap-
plication where the querier is located outside the WSN and the base station acts as an aggregator. One possible
solution is that data remains encrypted only during transit, while each node may use plaintext data to perform
aggregation operations. This leads to a related security issue - each intermediate node can modify, forge or dis-
card messages, or simply transmit false aggregation values. The root of the problem is that keys need to be
shared with the intermediate nodes and even a single compromised node is able to significantly alter the final
aggregation value. Thus, conventional cryptographic approach fails to achieve secure data aggregation. Also,
public key cryptography is very expensive for sensor nodes.
Recently, use of homomorphic cryptographic primitives to achieve security in data aggregation has gained mo-
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mentum. Proposals like [3, 4, 5, 6] suggest that homomorphic encryption holds great promise in this area since it
allows manipulation of encrypted data. This paper also discusses a symmetric key based homomorphism that

can be used to perform aggregation of encrypted data.
I1. HOMOMORPHIC ENCRYPTION IN SENSOR NETWORKS

Homomorphism has been much celebrated in literature for its use in secure aggregation of sensor data. Aggrega-
tion that employs homomorphism is proved to be more efficient in comparison to hop-by-hop encryption as dem-
onstrated in [3] and [4]. Concealed Data Aggregation (CDA) [3] protocol uses an additive and multiplicative ho-
momorphic encryption scheme suggested by Domingo-Ferrer [7] that allows the aggregator to aggregate en-
crypted data. Since security of the protocol depends on security of the underlying homomorphic scheme, CDA
ensures only data confidentiality. The encryption in CDA is very expensive and adds between 0%-22% additional
data overhead which increases the power consumption of the sending node.

Castellucia et al [4] proposed EDA, another scheme based on homomorphic encryption. This allows an aggrega-
tor to execute the aggregation function and aggregate the encrypted data that are received from its children with
no need for decryption and to recover the original messages. It uses a modular addition instead of the xor (Exclu-
sive-OR) operation that is found in the stream ciphers. Thus, even if an aggregator is being compromised, original
messages cannot be revealed by an attacker.

A secure end to end encrypted data aggregation scheme [5] is based on elliptic curve cryptography that exploits a
smaller key size. As well as it also allows the use of higher number of operation on cipher text and prevents the
distinction between two identical texts from their cryptography. An approach [6] uses homomaorphic encryption
Elliptic Curve EIGamal algorithm to achieve data confidentiality while allowing in-network aggregation.

A similar approach is presented in [8] for heterogeneous sensor networks by employing simple modular arithmet-
ic operations for homomorphism. However, this approach suffers from a drawback — the communication over-
head grows with the increase in the size of aggregation tree. This problem was resolved through a hierarchical
data aggregation model in [9]. A survey of secure data aggregation methods is presented in [10], which recom-
mends privacy homomorphisms based on symmetric key cryptography for secure data aggregation in wireless
sensor networks.

Since the breakthrough work of Gentry [11] in 2009, many fully homomaorphic schemes have been proposed as
an improvement on basic Gentry’s blueprint. But all suffered from a major drawback — infeasibility due to very
large keys. More recent and practical variants [12, 13] are based on sound security assumptions of learning with
errors and belong to public key paradigm. There are very few homomorphic cryptographic primitives which are
based on symmetric keys. Two recent symmetric homomorphic encryption methods are described in [14, 15].
Ensuring data privacy in clouds through a linear transformation fully homomorphic functions over square matric-
es of size 4 is basic idea in [14]. While [15] uses a variant of [16] in symmetric setting, which eliminates the re-

quirement of bootstrappability in FHE (a common feature of FHE schemes derived on Gentry’s blueprint).

I11. PROPOSED SCHEME

3.1 Public and Private Key Generation

In this section we show how we can generate the public and private keys for encryption. Private key generation

inputs a security parameter A, another parameter |. N is a large prime number of bit length = +/i. Let Sy and S,
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be two secret keys generated as follows. S; is a [ = [ size matrix where elements of matrix can be any random
number of size VA bits. S, is al x 1 size vector where elements of vector are randomly chosen numbers in Z . P
is a public key calculated as P = inv (S,>-1) where inv stands for multiplicative inverse of any number modulo
N.

3.2 Encryption Function
The encryption function uses two secret keys S;and S,, the prime number N and takes a takes input the plaintext

m which isa ! = 1 matrix. Encryption is performed as follows:
xy = (5§ xm— 5 lmod N
x; = (5§ %xx; —mlmod N

x3 = (8§ ®xx; —xy)med N
£ = (x.xg)
is ciphertext

Encryption algorithm is as follows:

Encryption(S;, S, m)

Set x_; = S, and X0 = m where m is the plaintext vector.
For0<i<Kk,compute x;.; = 5;x; — x;_4
Output Ciphertext ¢ = (x_;.xy)

W H=1

3.3 Decryption Function

Once the message C arrived at the destination we uses the private key 5, to decrypt it. Decryption is performed
as follows:

Parse cipher text ¢ into two cipher texts c1 and c2 which are matrices of size = 1 .

z, =(8 ®c,—c )Mod N

z, =5, ®xz,—c,) Mod N

m = (z;)

Decryption algorithm is as follows:

Decryption(S;,c)

1. Fork—1 =i = 0. compute
xiog = Sl — x;yy

2. Plaintext p = (Xc-2)

As we mentioned our scheme supports homomorphic properties, which gives us the ability to execute operations on
values even though they have been encrypted. It also allows additions, multiplication and comparison directly on ci-
pher text, which prevents the decryption phase at the aggregator’s level and saves nodes energy, which is crucial in
sensor networks.

Some fundamental operations of Homomorphic are as follow:

392 |Page




International Journal of Advance Research in Science and Engineering

Vol. No.4, Special Issue (01), September 2015

www.ijarse.com 155? %SSE& ’
3.3.1 Summation

Summation over cipher-texts are done as follows: let E(m,7and E{n1,] are two cipher text of their plain text s, and
i, respectively Then the sum of E{m; 1and E{'»t, 7, let call it c, is represented by ¢ = E{'m1, 1 + E{ m.] This sum op-
eration guarantees that the decryption value of C is the sum i, +m..

This function takes encryption of two or more plaintext and outputs a cipher text pertaining to summation of plaintext
values. Homomorphic summation function is as follows:

(my+mat 0 tmy,) = El

|T'|

. - — . & - - R’
my )+ Elmo ).+ E(m,)

Example 1

Let’s take an example with following values for matrix sizel x 1.
5, =833.5, =317, N=1021

Suppose there are two plaintext m1 and m2:

my = 312, m, =321

Encryption of m, is as follows:

x, = (5, xmy— 5, mod N

x, = (253 % 312 — 317 )mod 1021
%, = 929

x, = (5, % x,—mymod N

x, = (933 % 929 — 312¥mod 1021
%, = B39

%3 = (5 ®x—x)mod N

x; = (933 % 839 — 920)mod 1021
¥y = 216

E(m,) = (839.216)

.

Encryption of m, is as follows:

v, = (8§ xm,—5; hmod N

v, = (953 x 521 — 317)mod 1021
v, =1011

y2 =5 ®y —my)mod N

v, =953 % 1011 —5321)mod 1021
v =139

vz =5 ®xy —ymodN

vy = (9533 % 1539 — 1011mod 1021
Yy = 420

E(m,) =(139.429)

Performing summation operation over encrypted values
E(ml+m2) = (998,845

¢ = (998,643)

Decryption is as follows:

z, = (5, %o, —cjmod N
z; = (933 x 998 — 645)mod 1021
z;, =218
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z; = (8§, %z, — ¢, ImodN
z; = 3533 x 919 — 008
z, = 833

Hence we get back m; + m,.

3.3.2 Weighted Multiplication

Weighted Multiplication can be computed by taking one scalar Sc and encryption of a plaintext m which is E
(m). Scalar Multiplication function is performed as follows:

Scalar Multiplication = ( S5¢ x E(m)) Mod N

Example 2

Compute E{2m, ]

Here Sc is 2 and from the above example value of encrypted m, is

(m,) = (839,216}

LY

|T'|

. - . B i - Noma L]
Scalar Multiplication = (1678 ,432) Mod 1021
Scalor Multiplication = (837,432)

Decryption is as follows:

z, = (5, %¢, —c.)mod N

z, = (953 % 657 — 432) mod 1021
z, =837

z, = (5§, %z, —c;)mod N

z, = (853 x 837 — 657) Mod 1021
z, = 624

Hence we get 2 x m,

Comparison of two numbers over encrypted data can be done as follows: let g is subtraction of two encrypted
numbers and P is public key. To calculate minimum value between two number Min =g, x P = '/,
Example 3:

From the above example

El(m,) = (832.216%and E{m,} = (135.429)

Subtraction is: E{ml —m?2} = (880.808)

(q:.q2) = (680.808)

Min =g, x P ="/
Here g, = 680, **/5 =511,
p =inv (S;%-1)

p=2824

Min = (680 x 824)mod 1021 = 511

Min =812>511

Hence we get back 312 is smaller than 521

We can extend the size of | by which we can perform these operations on multiple data. Below an example is
example is presented for 1=2.

Example 4:

Let the size of | is 2
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S1is I*] size matrix and S2 is | size vector these are as follows:

ha

ZdJd '

- -

oo—

P

. =11

m; and m, are two plaintext vector of size |

5. =

ra

o
mq = M- =

-

Encryption of m, is as follows:

¥ =085, %xm, —5,)mod N
=150 21 =< =121 med 12
X, ||— S| mod 11

% =" modil

X = (5 xX —m mod N
%=l

¥ =5, =X, —X )mod N

% =1

E(my) =[5 1121

Encryption of m; is as follows:

Vi =5, xm; — 5, mod N
=120 -12

¥y =4l

V., =({8§ =¥, —m;)mod N
= 1%)

V.= 5, x ¥, - ¥,

n=l2l

Elmy) =[] 12

Addition of E(m;) and E(m,) is as follow:
E(m,+m.) = E(m, )} + E(m.)

|2 O

=21 12]

Decryption of E{m,+m-) is as follows

z, =[5 %e, —c,hmod N

2

z, = (5, %z, —¢;Jmod 11
= ||

Hence we get back m, +m-

3.3.3 Aggregation Functions

[JARSE
ISSN 2319 - 8354

This additively Homomorphic scheme can be used to aggregate the encrypted data and can be used to compute

average, min, max. When the user queries the network, instead of sending each sensor node’s data to the base

station, aggregators collect the information from its neighboring nodes, aggregates them (e.g., computes the

average), and send the aggregated data to the base station.

Basic Functions of Aggregation:

Average: Average is a basic and very useful function for data aggregation it can be performed over encrypted

data by using summation operation as explained above.

Minimum Function: Finding minimum values over encrypted data can be possible with this function. It can be

calculated by using comparison function.
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Maximum Function: Finding maximum values over encrypted data can be possible with this function.

IV. EXPERIMENTAL RESULTS

To show the effectiveness of our approach we have taken the results for the different values of A and p. Here A

and p are the size (in bits) of Secret keys S; and S, respectively. We implement our algorithm as a Java program

and evaluate its execution time in Millisecond. The computations were performed on JDK1.7.0 software, Win-

dows 7 platform is used and processor is Intel Core 2 Duo 21 GHZ.

Tables | shows the time taken to generate Secret keys, Encryption and Decryption. We varied the keys sizes and

obviously the security levels.

Tables Il shows the time taken to Addition and Scalar Multiplication. Table 111 shows the time taken to perform

Comparison function for the different value of Key size.

Runtime for number of plain text 5,10,50 are taken which is shown in the graph.

Table 1.Runtime of Keygen, Encryption and Decryption of The Propose Scheme, in Millise-

conds, for Different Values of Security Parameter

Sno|up |A Keygen | Encryption | Decryption
1 4 16 0.427 0.084 0.049
2 4 |20 |0.437 0.089 0.064
3 6 |36 |0.453 0.146 0.112
4 6 |40 | 0.457 0.190 0.140
5 8 |64 |0.476 0.262 0.358
6 8 |70 |0.483 0.364 0.397
7 10 | 100 | 0.502 1.283 0.576
8 10 | 120 | 0.516 1.739 0.948
9 16 | 256 | 0.523 19.26 2.614
10 16 | 280 | 0.529 25.51 3.281
1 20 | 400 | 0.536 43.69 28.34
12 20 | 440 | 0.552 73.22 64.72
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Table 2 Runtime of Addition and Scalar Multiplication of the Propose Scheme, in Milliseconds,

for Different Values of Security Parameter

Sno | Iy Addition | Scalar Multiplica-
tion

1 4 16 0.014 0.017
2 4 20 0.015 0.018
3 6 36 0.016 0.019
4 6 40 0.019 0.020
5 8 64 0.021 0.021
6 8 70 0.021 0.0219
7 10 100 | 0.022 0.022
8 10 | 120 | 0.023 0.025
9 16 | 256 | 0.024 0.026
10 16 | 280 | 0.025 0.027
11 20 | 400 | 0.025 0.028
12 20 | 440 | 0.026 0.029

Table 3 Runtime of Comparison of The Propose Scheme, in Milliseconds, for Different Values of

Security Parameter

S no V] Iy Comparison
1 4 16 0.048
2 4 20 0.050
3 6 36 0.060
4 6 40 0.063
5 8 64 0.066
6 8 70 0.082
7 10 100 0.087
8 10 120 0.099
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Fig 1 Runtime of Summation of the Propose Scheme for Number of Plain text 5, 10, 50 in Milli-
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Fig 3 Runtime of Comparison of the Propose Scheme for Number of Plain text 5, 10, 50 in Milli-

seconds, for Different Values of Security Parameter
V. CONCLUSION

Applications of Wireless sensor networks are increasing, and with the same pace is the need of securing them.
Data aggregation is essential in WSNs and untrusted environments are unavoidable. So there is need of proto-
cols that achieve secure data aggregation. Homomorphic schemes with symmetric keys are most promising solu-
tion to this problem. We proposed a homomorphic scheme that can perform many aggregation functions over
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encrypted data. Runtime of the scheme is also practical for limited resources of sensor nodes.

REFERENCES

[1].

2.

[3].

[4].

[5].

[6].

[7]1.

[8].

9.

[10].

[11].
[12].

[13].

[14].

[15].

[16].

Alzaid, E Foo, ] M G Neito and D G Park, “A taxonomy of secure data aggregation in wireless sensor
networks”, International Journal of Communication Networks and Distributed Systems Volume 8 Issue
1/2, December 2012 Pages 101-148

Przydatek, B., Song, D. X. & Perrig, A. (2003), SIA: Secure Information Aggregation in Sensor Networks
in I. F. Akyildiz, D. Estrin, D. E. Culler & M. B. Srivastava, eds, ‘SenSys’, ACM, pp. 255-265.

Girao, J., Westhoff, D., and Schneider, M. (2005, May). CDA: Concealed data aggregation for reverse
multicast traffic in wireless sensor networks. In Communications, 2005. ICC 2005. 2005 IEEE Interna-
tional Conference on (Vol. 5, pp. 3044-3049). IEEE.

Castelluccia, C., Mykletun, E., and Tsudik, G. (2005)Efficient Aggregation of encrypted data in Wireless
Sensor Networks. Second Annual International Conference on Mobile and Ubiquitous Systems: Network-
ing and Services (MobiQuitous’05)

Jacques M. Bahi, Christophe Guyeux and Abdallah Makhoul “Efficient and Robust Secure Aggregation of
Encrypted Data in Sensor Networks”

Jacques M. Bahi, Christophe Guyeux and Abdallah Makhoul “Secure Data Aggregation in Wireless Sen-
sor Networks”

J.I. Domingo-Ferrer, “A new privacy homomorphism and applications,” Information Processing Letters
60.5 (1996): pp 277-282.

Ozdemir, S. (2007) Concealed data aggregation in heterogeneous sensor networks using privacy homo-
morphism, in: Proceedings of the ICPS’07: IEEE International Conference on Pervasive Services, Istan-
bul, Turkey, 2007, pp. 165-168.

Ozdemir, S. (2008) Secure data aggregation in wireless sensor networks via homomorphic encryption.
Journal of The Faculty of Engineering and Architecture of Gazi University 23 (2), pp 365-373.

Ozdemir, S. and Xiao, Y. (2009) Secure data aggregation in wireless sensor networks: A comprehensive
overview. Computer Networks 53 (2009) 20222037 Elsevier. doi:10.1016/j.comnet.2009.02.023

C. Gentry, “Fully homomorphic encryption scheme,” Diss. Stanford University, 2009.

Z. Brakerski, C. Gentry, and V. Vaikuntanathan. “Fully homomorphic encryption without bootstrapping”,
Cryptology ePrint Archive, Report 2011/277.

C Gentry, A Sahaiy and B Waters. “Homomorphic Encryption from Learning with Errors: Conceptually-
Simpler, Asymptotically-Faster, Attribute-Based”. 2013/340

C.P. Gupta and 1. Sharma, “A fully homomorphic encryption scheme with symmetric keys with applica-
tion to private data processing in clouds,” Network of the Future (NOF), 2013 Fourth International Confe-
rence on the, vol., no., pp.1,4, 23-25 Oct. 2013 doi: 10.1109/NOF.2013.6724526

N Aggarwal, C Gupta and I Sharma, “Fully Homomorphic Symmetric Scheme without Bootstrapping”,
International Conference on Cloud Computing and Internet of Things (CCIOT), 2014, Chengdu, China.
Marten van Dijk and Craig Gentry and Shai Halevi and Vinod Vaikuntanathan. Fully Homomorphic En-
cryption over the Integers.https://eprint.iacr.org/2009/616

39 |Page




