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ABSTRACT 

Data aggregation is important in wireless sensor ne tworks to save energy. In an untrusted environment, it 

is required that this aggregation be performed in a secure manner. Cryptographic techniques to achieve 

this are time-consuming, hence violate the basic principles of energy saving. This paper proposes a 

mechanism based on homomorphisms to perform several aggregation functions like min, max, sum, 

average in a manner which is secure yet fast. 
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I. INTRODUCTION 

 

A wireless sensor network (WSN) consists of hundreds of sensor nodes deployed over a geographical area. Ad-

vances in wireless technology have resulted in increased use of WSNs in applications like as medical, military, 

monitoring disaster areas etc and relatively newer applications like habitat monitoring and target tracking [1]. 

The sensor nodes are usually devices with low computation capability and limited energy and memory re-

sources. These limitations have a direct implication that communication between the nodes should be kept as 

low as possible. Given the enormous amount of data that a sensor node records and communicates, data aggre-

gation techniques have to be used essentially. Data aggregation is defined as the process of aggregating the data 

from multiple sensors and calculates a smaller message that summarizes the important information from a group 

of sensors. 

Though data aggregation is necessary to reduce communication overhead significantly, but at the same time it 

may lead to certain problems when the sensors are being deployed in an untrusted environment. Security re-

quirements make encryption of data necessary, but this interferes with data aggregation. Secure data aggregation 

problem is defined in [2] as efficient delivery of the summary of sensor readings that are reported to an off-site 

user in such a way that ensures these reported readings have not been altered. They consider an aggregation ap-

plication where the querier is located outside the WSN and the base station acts as an aggregator. One possible 

solution is that data remains encrypted only during transit, while each node may use plaintext data to perform 

aggregation operations. This leads to a related security issue - each intermediate node can modify, forge or dis-

card messages, or simply transmit false aggregation values. The root of the problem is that keys need to be 

shared with the intermediate nodes and even a single compromised node is able to significantly alter the final 

aggregation value. Thus, conventional cryptographic approach fails to achieve secure data aggregation. Also, 

public key cryptography is very expensive for sensor nodes. 

Recently, use of homomorphic cryptographic primitives to achieve security in data aggregation has gained mo-
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mentum. Proposals like [3, 4, 5, 6] suggest that homomorphic encryption holds great promise in this area since it 

allows manipulation of encrypted data. This paper also discusses a symmetric key based homomorphism that 

can be used to perform aggregation of encrypted data. 

 

II. HOMOMORPHIC ENCRYPTION IN SENSOR NETWORKS 

 

Homomorphism has been much celebrated in literature for its use in secure aggregation of sensor data. Aggrega-

tion that employs homomorphism is proved to be more efficient in comparison to hop-by-hop encryption as dem-

onstrated in [3] and [4]. Concealed Data Aggregation (CDA) [3] protocol uses an additive and multiplicative ho-

momorphic encryption scheme suggested by Domingo-Ferrer [7] that allows the aggregator to aggregate en-

crypted data. Since security of the protocol depends on security of the underlying homomorphic scheme, CDA 

ensures only data confidentiality. The encryption in CDA is very expensive and adds between 0%-22% additional 

data overhead which increases the power consumption of the sending node. 

Castellucia et al [4] proposed EDA, another scheme based on homomorphic encryption. This allows an aggrega-

tor to execute the aggregation function and aggregate the encrypted data that are received from its children with 

no need for decryption and to recover the original messages. It uses a modular addition instead of the xor (Exclu-

sive-OR) operation that is found in the stream ciphers. Thus, even if an aggregator is being compromised, original 

messages cannot be revealed by an attacker. 

A secure end to end encrypted data aggregation scheme [5] is based on elliptic curve cryptography that exploits a 

smaller key size. As well as it also allows the use of higher number of operation on cipher text and prevents the 

distinction between two identical texts from their cryptography. An approach [6] uses homomorphic encryption 

Elliptic Curve ElGamal algorithm to achieve data confidentiality while allowing in-network aggregation.  

A similar approach is presented in [8] for heterogeneous sensor networks by employing simple modular arithmet-

ic operations for homomorphism. However, this approach suffers from a drawback – the communication over-

head grows with the increase in the size of aggregation tree. This problem was resolved through a hierarchical 

data aggregation model in [9]. A survey of secure data aggregation methods is presented in [10], which recom-

mends privacy homomorphisms based on symmetric key cryptography for secure data aggregation in wireless 

sensor networks. 

Since the breakthrough work of Gentry [11] in 2009, many fully homomorphic schemes have been proposed as 

an improvement on basic Gentry‟s blueprint. But all suffered from a major drawback – infeasibility due to very 

large keys. More recent and practical variants [12, 13] are based on sound security assumptions of learning with 

errors and belong to public key paradigm. There are very few homomorphic cryptographic primitives which are 

based on symmetric keys. Two recent symmetric homomorphic encryption methods are described in [14, 15]. 

Ensuring data privacy in clouds through a linear transformation fully homomorphic functions over square matric-

es of size 4 is basic idea in [14]. While [15] uses a variant of [16] in symmetric setting, which eliminates the re-

quirement of bootstrappability in FHE (a common feature of FHE schemes derived on Gentry‟s blueprint). 

 

III. PROPOSED SCHEME 

3.1 Public and Private Key Generation 

In this section we show how we can generate the public and private keys for encryption. Private key generation 

inputs a security parameter λ, another parameter l. N is a large prime number of bit length . Let S1 and S2 
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be two secret keys generated as follows. S1 is a  size matrix where elements of matrix can be any random   

number of size √λ bits. S2 is a  size vector where elements of vector are randomly chosen numbers in . P 

is a public key calculated as P = inv (S1
2-1) where inv stands for multiplicative inverse of any number modulo 

N. 

 

3.2 Encryption Function 

The encryption function uses two secret keys S1and S2, the prime number N and takes a takes input the plaintext 

m which is a  matrix. Encryption is performed as follows: 

 

 

 

 

 is ciphertext 

Encryption algorithm is as follows: 

 

 

 

 

 

 

 

3.3 Decryption Function  

Once the message C arrived at the destination we uses the private key  to decrypt it. Decryption is performed 

as follows: 

Parse cipher text c into two cipher texts c1 and c2 which are matrices of size  . 

 

 

 

Decryption algorithm is as follows: 

 

 

 

1.1 Homomorphic Properties 

 

As we mentioned our scheme supports homomorphic properties, which gives us the ability to execute operations on 

values even though they have been encrypted. It also allows additions, multiplication and comparison directly on ci-

pher text, which prevents the decryption phase at the aggregator‟s level and saves nodes energy, which is crucial in 

sensor networks. 

Some fundamental operations of Homomorphic are as follow: 

Encryption(S1, S2, m) 

 
1. Set x−1 = S2 and x0 = m where m is the plaintext vector. 

2.  For 0 ≤ i < k, compute   

3. Output Ciphertext   

Decryption(S1, c ) 
 

1. For  compute 

 

2.  Plaintext p = (xk−2) 
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3.3.1 Summation 

Summation over cipher-texts are done as follows: let  and   are two cipher text of their plain text  and 

 respectively Then the sum of  and  , let call it c, is represented by c =  +  This sum op-

eration guarantees that the decryption value of C is the sum   + .  

This function takes encryption of two or more plaintext and outputs a cipher text pertaining to summation of plaintext 

values. Homomorphic summation function is as follows: 

 

Example 1 

Let‟s take an example with following values for matrix size . 

 , ,  

Suppose there are two plaintext m1 and m2: 

 

Encryption of m1 is as follows: 

 

 

 

 

 1021 

 

 

 

 

 

Encryption of m2 is as follows: 

 

 

 

 

 

 

 

 

 

 

Performing summation operation over encrypted values 

  

 

Decryption is as follows: 
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Hence we get back m1 + m2. 

3.3.2 Weighted Multiplication 

Weighted Multiplication can be computed by taking one scalar Sc and encryption of a plaintext m which is E 

(m). Scalar Multiplication function is performed as follows: 

 

Example 2 

Compute  

Here Sc is 2 and from the above example value of encrypted  is 

 

 

 

Decryption is as follows: 

 

 

 

 

 

 

Hence we get  

Comparison of two numbers over encrypted data can be done as follows: let  is subtraction of two encrypted 

numbers and P is public key. To calculate minimum value between two number   

Example 3: 

From the above example  

 and  

Subtraction is:  

  

 

Here q1 = 680,   =511,  

p = inv (S1
2-1) 

p = 824 

 

812>511 

Hence we get back 312 is smaller than 521 

We can extend the size of l by which we can perform these operations on multiple data. Below an example is 

example is presented for l=2 . 

Example 4: 

Let the size of l is 2  



 

395 | P a g e  
 

S1 is l*l size matrix and S2 is l size vector these are as follows: 

                        

 m1 and m2 are two plaintext vector of size l  

                       

Encryption of m1 is as follows: 

 

   

     

 

 

 

 

 

 

Encryption of m2 is as follows: 

 

    

 

)  

 

 

 

 

Addition of  E(m1) and E(m2) is as follow: 

E( + ) =  

=  

Decryption of + ) is as follows 

 

 

 

 

Hence we get back +  

3.3.3 Aggregation Functions 

This additively Homomorphic scheme can be used to aggregate the encrypted data and can be used to compute 

average, min, max. When the user queries the network, instead of sending each sensor node‟s data to the base 

station, aggregators collect the information from its neighboring nodes, aggregates them (e.g., computes the 

average), and send the aggregated data to the base station. 

Basic Functions of Aggregation: 

Average: Average is a basic and very useful function for data aggregation it can be performed over encrypted 

data by using summation operation as explained above. 

Minimum Function: Finding minimum values over encrypted data can be possible with this function. It can be 

calculated by using comparison function. 
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Maximum Function: Finding maximum values over encrypted data can be possible with this function. 

IV. EXPERIMENTAL RESULTS 

 

To show the effectiveness of our approach we have taken the results for the different values of λ and µ. Here λ 

and µ are the size (in bits) of Secret keys S1 and S2 respectively. We implement our algorithm as a Java program 

and evaluate its execution time in Millisecond. The computations were performed on JDK1.7.0 software, Win-

dows 7 platform is used and processor is Intel Core 2 Duo 21 GHZ. 

Tables I shows the time taken to generate Secret keys, Encryption and Decryption. We varied the keys sizes and 

obviously the security levels.  

Tables II shows the time taken to Addition and Scalar Multiplication. Table III shows the time taken to perform 

Comparison function for the different value of Key size. 

Runtime for number of plain text 5,10,50 are taken which is shown in the graph. 

Table 1.Runtime of Keygen, Encryption and Decryption of The Propose Scheme, in Millise-

conds, for Different Values of Security Parameter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S_no µ λ Keygen Encryption Decryption 

1 4 16 0.427 0.084 0.049 

2 4 20 0.437 0.089 0.064 

3 6 36 0.453 0.146 0.112 

4 6 40 0.457 0.190 0.140 

5 8 64 0.476 0.262 0.358 

6 8 70 0.483 0.364 0.397 

7 10 100 0.502 1.283 0.576 

8 10 120 0.516 1.739 0.948 

9 16 256 0.523 19.26 2.614 

10 16 280 0.529 25.51 3.281 

11 20 400 0.536 43.69 28.34 

12 20 440 0.552 73.22 64.72 
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Table 2 Runtime of Addition and Scalar Multiplication of the Propose Scheme, in Milliseconds, 

for Different Values of Security Parameter 

S_no µ λ Addition Scalar Multiplica-

tion 

1 4 16 0.014 0.017 

2 4 20 0.015  0.018  

3 6 36 0.016 0.019  

4 6 40 0.019 0.020  

5 8 64 0.021  0.021  

6 8 70 0.021 0.0219  

7 10 100 0.022 0.022  

8 10 120 0.023  0.025  

9 16 256 0.024  0.026  

10 16 280 0.025  0.027  

11 20 400 0.025 0.028  

12 20 440 0.026  0.029  

Table 3 Runtime of Comparison of The Propose Scheme, in Milliseconds, for Different Values of 

Security Parameter 

S_no µ λ Comparison 

1 4 16 0.048 

2 4 20 0.050 

3 6 36 0.060 

4 6 40 0.063 

5 8 64 0.066 

6 8 70 0.082 

7 10 100 0.087 

8 10 120 0.099 
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Fig 1  Runtime of Summation of the Propose Scheme for Number of Plain text 5, 10, 50 in Milli-

seconds 

 

Fig 2 Runtime of Scalar Multiplication of the Propose Scheme for Number of Plain Text 5, 10, 

50 in Milliseconds, for Different Values of Security Parameter 

 

Fig 3 Runtime of Comparison of the Propose Scheme for Number of Plain text 5, 10, 50 in Milli-

seconds, for Different Values of Security Parameter 

 

V. CONCLUSION 

 

Applications of Wireless sensor networks are increasing, and with the same pace is the need of securing them. 

Data aggregation is essential in WSNs and untrusted environments are unavoidable. So there is need of proto-

cols that achieve secure data aggregation. Homomorphic schemes with symmetric keys are most promising solu-

tion to this problem. We proposed a homomorphic scheme that can perform many aggregation functions over 
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encrypted data. Runtime of the scheme is also practical for limited resources of sensor nodes. 
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