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ABSTRACT

Cache Memory is a high speed semiconductor memory acts as a buffer between CPU and Main Memory. In
current generation processors, the processor- memory bandwidth is the main bottleneck, because a number of
processor cores sharing it through the same processor memory interface or bus. The on chip memory hierarchy
is an important resource that should be managed efficiently against the raising performance gap between
processor and memory. This Paper yields a comprehensive survey to improve the cache performance on the

basis of miss rate, hit rate, latency, efficiency and cost.
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I. INTRODUCTION

Cache provides the fastest possible storage after the registers used to kept the most frequently used data or
instructions so that it can be accessed quickly. In multi core chips, cache is shared by multiple cores on a chip
allows different cores to share data and an update performed by one core can be seen other cores with no need
for cache coherence methods. There are multiple levels of cache memory with first level being smallest and
fastest to last level being largest and slowest. Generally, in most of processors first level cache resides in the
processor, second level cache and third level cache are on separate chip [1]. In multicore processors, each
processor core has its own L1 cache while last level cache is shared by all the cores [2].

Processor Procassor
Cex= Ce= L Cem Cem L
CPU CPU CRU CPU
| Li Qe | | Li Cachs | | Li Caciz | | Li Cxcic |
L2 L2 L2 Cacha
Cacha Cacha
| Svstem Buz | | System Bus |
| Swstem Memory | | Swztem Mamory |
Figurel.1l Figura 1.1

159 |Page




International Journal of Advance Research in Science and Engineering

Vol. No.4, Special Issue (01), September 2015

www.ijarse.com JJARSE
WW.IJArse.c _ _ _ _ ISSN 2319 - 8354

Fig. 1.1 and Fig. 1.2 shows two typical multicore processor architecture. Fig. 1.1 shows multicore processor

with separate L2 cache while Fig. 1.2 shows multicore processor with shared L2 cache. The clock of processor

is some hundred faster than the access latency of main memory [3]. Cache provides the service to reduce this

gap and make system performance better. Cache miss is failure to find the required instruction or data in

memory and if a miss occurs then would be brought in to the cache from main memory in the form of blocks.

The three ‘C’ model sorts all misses in to three simple categories:

1.1 Compulsory
The very first access to a block can not be in the cache, so the blocks must be brought n to the cache.

Compulsory misses are those that occure even if there is an infinite cache.

1.2 Capacity
If the cache can not contain all the blocks required during execution of a program, capacity misses will occure

because of blocks being discarded and later retrieved due to limted size of cache.

1.3 Conflict

If the block placement strategy is not fully associative , conflict misses will occure due to insufficient space
when two blocks are mapped on the same location.

The two major factors effects cache performance are miss rate and miss penalty. The time needed to handle miss
is known as miss penalty[4]. There are several methods to reduce miss rates which include victim cache or
cache line which is eliminated from cache[5][6]. Direct mapped cache is a popular design choice for processors
but it suffer systematic interference misses when more than one address maps in to the same cache set. Column
associative caches minimize miss rate of direct mapped caches[7]. Cache misses can be reduced by
understanding the causing factors and factors can be removed by by the programmers from applications using
different CPU profilers and also by reorganizing and rearranging data[8]. Multilevel cache can be used to reduce
miss penalty[9][10] and cache performance can also be optimized by reducing the hit time[10]. In multi-level
cache, the first level is small but faster while the second level is large but slower than first level. This
significantly improves the average memory access time of a system when each level must have a significantly
larger capacity than the level above it in the hierarchy. Locality of references seen by each level decreases as
one gets deeper in the hierarchy and, requests to recently referenced data are handled by the upper levels of the
memory system. By increasing cache pipeline stages, the gap between processor cycle time and cache access
time can be reduced. In multicore processor, there is a problem of cache pollution occurs n the last level of
cache. Cache pollution takes place when the data of weak locality replaces data of strong locality. Since the last
last level of cache is shared by all cores of processor so all the cores get affected. To address this issue, a user
level control system is introduced.

There are various kinds of mapping techniques used to map data from main memory to cache. These mapping
techniques directly effects the processor speed. In this paper, the various mapping techniques and their impact
on processor performance is discussed.

Direct mapping is a simple mapping technique where a particular block of data from main memory can be

placed in a fixed location in to the cache. Direct map caches are simple to design but have a low hit rate. A
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better approach introduced is set-associative mapping with improved hit rate[11]. In this paper, higher
associativity to reduce miss rate is discussed along with some other techniques to reduce miss rate such as using
larger blocks, using large size cache and compiler optimization. Way prediction and pseudo associative cache
are also discussed to reduce miss rate. In way prediction technique, extra bits are kept in the cache for the
prediction of the set of next cache access[12].

The organization of rest of paper is as fallows: The next section | defines the survey and review of related work,
Section 11l defines the analysis of the performance of various optimization techniques and finally Section IV

defines the conclusion.

Il. RELATED WORK
2.1 Techniques to Reduce Cache Miss Rate

Hardware based optimization techniques to reduce cache miss rate are:

2.1.1 Using Large Size Cache

Large caches reduce the capacity misses [4]. In larger cache there is less chance that there will be conflict but
the drawback is larger hit time and higher cost [9].

2.1.2 Using larger Blocks

Using large blocks is a simplest method to reduce the compulsory misses because larger blocks take advantage
of spatial locality [9].

2.1.3 Higher Associativity

Higher associativity reduces conflict misses and comes at the cost of increased hit time [12]. Practical results
show that an 8- way set associative cache has, generally same miss rate as fully cache. Direct mapped cache of
size N has approximately same miss rate as 2- way set associative cache of size N/2. This observation called 2:1
cache rule of thumb and held for cache sizes less than 128 KB.

2.1.4 Way Prediction and Pseudo Associative Cache

Way Prediction is a technique where extra bits are kept in the cache for prediction of the set of next cache access
[13]. Here, the multiplexer is set early to select desired block and only one tag comparison is needed when
accessing cache. If prediction is correct then there is a fast hit, but if not then it tries other block, it changes the
way predictor and has an extra clock cycle latency. Pseudo Associative caches are also called column
associative cache. In this cache the space is logically divided in to two zones. For every visit Pseudo Associative
cache will act as direct mapped in first zone so each block has only one place to appear in cache. In case of hit
case of hit this cache is just like the direct mapped cache. In case of miss, CPU will visit a specified location in
another zone and if cache hits this time a pseudo hit happens and then the block is swapped for the block of the
first entry.

2.1.5 Compiler Optimization

Compiler optimization technique reduces miss rates without any hardware change. This reduction comes from
optimized software. Huge performance gap between processor and main memory has motivated compiler
designers to review the memory hierarchy to see if compile time optimization can improve performance. So the
research is divided between improvements in instruction misses and in data misses. Merging Arrays, Loop

Interchange, Loop Fusion and Blocking are optimizations found in many modern compilers [14].
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Hardware based optimization techniques to reduce cache hit time are:

2.2.1 Small and Simple Cache

The index portion of address to read the tag memory and then comparison with address is a time consuming
portion of cache hit. So small cache can be faster and help the hit time. But for second level cache, it is critical
to keep cache small enough to fit on the same chip as the processor to avoid time penalty of going off-chip. So
for lower level caches some design strike a compromise by keeping tags on chip and data off- chip, resulting a
fast tag check and provide greater capacity for separate memory chips [9].

2.2.2 Avoiding Address Translation During Indexing of the Cache

Virtual addresses generated by CPU have to be translated in to physical address used by traditional caches. The
guideline of making the common case suggests that we use virtual addresses for cache because hits are more
common than misses. Such caches are termed as virtual cache. Virtual caches eliminate address translation from
hit time but they might have to be flushed every time process is switched so by storing process identifier
alongside address tag in cache, flushing can be avoided until operating system recycles process identifier.
Another reason why virtual caches are not popular is that operating system and user programs may use two
different virtual addresses for the same physical address. One solution to get the best of both virtual and physical
cache is to use part of the page offset same in both virtual and physical addresses to index the cache [14].

2.2.3 Pipeline Cache Access to Increase Bandwidth

This optimization is merely to pipeline cache access so that effective latency of level one cache hit can be
multiple clock cycles, giving fast clock cycle time and high bandwidth but slow hits. For instance, the pipeline
for Pentium Processor took one clock cycle to access instruction cache, for Pentium Pro through Pentium 111 it
took two clock cycles and for Pentium IV it takes four clock cycles. This division increases stages of pipeline,
leading to high penalty on mispredicted branches and more clocks between issue of the load and the use of data
[12].

2.2.4 Trace Cache

To find lots of instruction level parallelism, it is also a challenge to find enough instruction every cycle without
using dependencies. The Trace cache is an instruction cache in processor that keeps dynamic instruction
sequences after they have been fetched and executed. In order to follow instructions at subsequent times, there is
no need to go regular cache or memory for the same instruction sequence. The main advantage of trace cache is

that it reduces the needed fetch bandwidth on processing pipeline [14].

2.3Techniques to Reduce Cache Miss penalty

Hardware based optimization techniques to reduce cache miss penalty are:

2.3.1 By Using Multilevel Cache

It is defined as multiple levels of cache, with small size fast cache is backed up by another large size slow cache.
In multilevel caches operation is proceeds by first checking the fastest cache or level one cache. In multilevel
cache the second level cache is much bigger than first level because the second level cache contains everything
of first level [12]. If size of second level cache is not much bigger than first level then the local miss rate will be
high.
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2.3.2 Reads Priority Over Writes on Miss

A write buffer is a place to implement this optimization. The simplest way is that for a read miss to wait until
write buffer is empty. The write buffers may create hazards since they contain updated value of location needed
when a read miss occurs, that is a read after write hazard through memory. The solution is to check the write
buffer contents when a read miss occurs. If there are no conflicts and memory system is available, send the read
before the writes to reduce the miss penalty [14]. Most of the processors gives reads priority over write on miss.
2.3.3 Merging Write Buffers

If the write buffer is empty, then data and full address are written in the buffer by the processor. The processor
continues working while the write buffers prepare to write the content to memory. If the buffer has other
modified blocks inside it, then the addresses can be checked to see if address of new data. If, it matches then the
new data is combined with entry. This is known as merging write buffers. Write merging is used in Sun Niagara
and many other processors [14]. If the buffer is full and there is no address match then the processor and cache
must wait until the buffer has empty entry.

2.3.4 Victim Cache

Victim cache contains the dirty blocks that are discarded from main cache because of a miss [15]. It is a fully
associative cache with size 4 to 16 lines residing between a direct mapped L1 cache and next level of memory.
When a cache miss occurs then before going to the next level victim cache is checked. If the desired address
found in victim cache, then the desired data is returned to CPU. Victim cache reduces the impact of conflict
misses [16].

2.3.5 Early restart and Critical words first

On the basis of observation it is clear that CPU normally needs only one word of the block at particular time [4].
So according to these techniques, not to wait for the complete block to be loaded before sending the requested
word and restarting CPU. According to critical word first technique: First request the missed word from memory
and pass it to the CPU immediately. The CPU continues execution while filling the remaining of words n the
block. Since the critical word first fetched so it is also called the wrapped fetch or requested word first. And
according to Early Start technique: Fetch words in sequential order but when the requested word of block

arrives, send it to the CPU to continue execution [17].

111. PERFORMANCE EVALUATION

In this paper, we have discussed and analyzed different cache optimization techniques implemented in recent
past. We have compared most of these techniques for different parameters and summarized them in Tablel.
Various parameters on the basis of which different techniques have been compared are: Miss Rates(MR), Hit
Rates(HR), Miss Penalty(MP), Hit Time(HT), Power Consumption(PC), Access Time(AT), Cost, Complexity
and Cycle Time(CT). All of these techniques have some advantages and disadvantages, also summarized in
Tablel.
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Table 1 Comparison Of Cache Optimization Techniques On The Basis Of Miss Rates( Mr),
Miss Penalty (Mp), Hit Time (Ht), Hit Rates (Hr), Power Consumption (Pc), Access Time (At),

Cost, Complexity And Cycle Time(Ct).

Comparison Parameters

Techniques
Com
MR MP HT HR PC AT Cost plexi CT
ty
Reduce Miss Rates,
Larger Cache cache coherence issue N/A High High High Slow High 2 Less
Decrease compulsory
Larger Block misses, increase High Less High High Slow N/A 0 High
conflict misses
Higher Associativity Reduce capacity, Less High Low High Fast High 1 High
canflict misses
Low
Way Prediction Reduces Conflict High High High depends Slow N/A 2 High
Misses on wav
Compiler Optimization Reduce Miss Rates High Less High Less Fast N/A 3 N/A
Small and simple Increase Miss Rate N/A High N/A Less Fast Less 0 N/A
cache
Avoiding Address
Translation during Reduce Miss Rate N/A Less N/A Less Fast N/A 2 Less
indexina of the Cache
High, Less
Pipelined Cache N/A Less High Low N/A Fast Hardwar 2 with 3
e Added stages
Trace Cache N/A N/A Less High Less Fast N/A 2 N/A
Higher
Multilevel cache Cache Coherence Low for High High High Slow High 2 than
Misses takes place 11 Direct
Reads Priority over
. . N/A Less Less N/A N/A N/A N/A 2 Less
writes on miss
Merging Write Buffers N/A Less N/A N/A Less N/A High 3 Less
Compar Higher
Victim Cache Reduce Cache Misses Less able High Low Mediu High 1 than
with m Direct
Direct Mapped
Early restart and
o ) N/A Less N/A N/A N/A Fast N/A 2 Less
Critical word first
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In this paper, we have discussed and analyzed discussed and determined the performance of various techniques
used for cache optimization. We have summarized our findings in Tablel. We found that its hard to identify
particular cache optimization as the best choice in all the cases. Every technique has its design constraints,
advantages and limitations. Some techniques could be further enhance. For instance conflict misses can be
reduced by using larger block size, larger cache and way prediction method. But using larger block size may
increase miss penalty and power consumption. On the other side larger caches are costly and produces slow
access time. It is also associated with cache coherence problem. Higher associativity has fast access time but
low cycle time. Victim cache reduces conflict misses at high cost comparing to cache miss. To conclude, all
three schemes Reducing Hit Time, Reducing Miss Rate and Reducing Miss Penalty should be collectively

applied for better cache optimization.
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