International Journal of Advance Research in Science and Engineering
Vol. No.4, Special Issue (01), September 2015

W AT IJARSE
www.ijarse.com

ISSN 2319 - 8354
SAAC-SECURITY PRESERVING ARTIFICIAL
INTELLEGENT AUTOTUNED COMPILER- A Survey

A.Yaganteeswarudu®, P.Surekha®

'Computer Science and Engineering Sreenidhi Institute of Science & Tech (Autonomous)
Hyderabad, (India)
Computer Science and Engineering Dr.MVSIT Mangalore (India)

ABSTRACT

Compilers are generally supposed to make your code as efficient as possible — while compilation finding errors
and converting to executable code.Todays most important challenging feature of programming is security.
Programmers need to provide more security to the programmes developed. And while it may be well-established
behavior, there is always danger when the behavior of code is opaque to the coder. Programmes need to be self
improvement which is the facility provided by artificial intelligence. Analyzing the equal implementation details
for performance is the ongoing research area.

Closer to the compiler are development frameworks, some of which have begun to make safe behavior the
default. Frameworks like Django and Grails, for instance, will provide some protection against XSS and CSRF
attacks on the front end, or SQL injection attacks on the back end. Autotuning compiler measure execution time
and compare and select the best-performing implementation. By using recursive self improvement technique of

the artificial intelligence concept it should improve the design of constituent sofiware’s and hardware’s.
Keywords: Autotuning; Artificial Intelligence; Stak Buffer; Deterministic Finite Automata;
I. INTRODUCTION

The challenge with frameworks and compilers is that the lower you go in the technology stack, the less context
you have to make decisions. When you write code, you know to a large degree who will be using it and what
they will be trying to do. You can put security logic in exactly the appropriate places based on the use cases.
Current architectures and compilers continue to evolve bringing higher performance, lower power and smaller
size while attempting to keep time to market as short as possible. Typical systems may now have multiple
heterogeneous reconfigurable cores and a great number of compiler optimizations available, making manual
compiler tuning increasingly infeasible. Furthermore, static compilers often fail to produce high-quality code
due to a simplistic model of the underlying hardware.

Compilers may be used to compile themselves. As compilers are more optimized they can recursively recompile
themselves by using artificial intelligence and so be faster compiling.

Autotuning is related to hardware (and hardware-software) design space exploration. The process of analyzing
various functionally equivalent implementations to identify the one that best meets objectives. Many codes

155|Page

International Journal of Advance Research in Science and Engineering

Vol. No.4, Special Issue (01), September 2015

www.ijarse.c IJARSE
djarse.com ISSN 2319 - 8354

spend the bulk of their computation time performing very common operations. Autotuning is used to enhance

performance without requiring low-level programming of the application.

In this paper iam proposing the concept of producing compiler with the features security, artificial intelligence

concept self recursive method and Autotuning.

Il. SECURITY PRESERVING

The following may be the attcks an attacker can do Buffer overrun vulnerabilities
a. Stack-based: Stack-smashing attack
b. Heap-based: Function pointers, C++ virtual pointers, Exception handlers (CodeRed)
a. Smashing the Stack
= To overflow (automatic) stack buffer, one would need:

o Shellcode, i.e. characters representing machine code (obtain from gdb, as)

o Memory location of injected shellcode (typically buffer address)
= Can approximate to make up for lack of precise information

o nop instructions at the beginning of the shellcode

o overwrite locations around 0(%ebp)with shellcode address
= suid installed programs. Shellcode: shell, export xterm display
b. Heap-Based Attacks
= Function pointer

o Higher address: function pointer

o Lower address: buffer
= C++ Pointer to vtable

o Higher address: virtual pointer

o Lower address: buffer
A compiler doesn’t know whether a function call involved direct user input, and could potentially introduce
huge slow-downs by attempting to, say, check for buffer overruns everywhere; but if it could figure out or be
told the right context it could provide an additional layer of security without any developer interaction. As
security awareness grows across the industry, the basic tools and infrastructure required to produce code will
need to remove the risk of damaging side-effects in optimization. As they do so, let’s hope they take the
opportunity to explore solving the difficult problems of security.
Compiler-assisted securing of programs at runtime Via added runtime checks as part of function invocations and
add protection code such that protect what: control data in stack frames , What from: most stack-smashing
attacks.

I11. ARTIFICIAL INTELLIGENT COMPILER

Recursive self-improvement is the speculative ability of a strong artificial intelligence computer program to
program its own software, recursively. This is sometimes also referred to as Seed Al because if an Al were
created with engineering capabilities that matched or surpassed those of its human creators, it would have the
potential to autonomously improve the design of its constituent software and hardware. Having undergone these

156 |Page

https://en.wikipedia.org/wiki/Artificial_general_intelligence

International Journal of Advance Research in Science and Engineering

Vol. No.4, Special Issue (01), September 2015

www.ijarse.com , .IJ.ARS]% _

improvéments, it would then be better able to find ways of optimizing its structure and improviné;hﬁslglgi)litbijejs4
further. It is speculated that over many iterations, such an Al would far surpass human cognitive abilities. A
limited example is that program language compilers are often used to compile themselves. As compilers become
more optimized, they can re-compile themselves and so be faster at compiling. However, they cannot then
produce faster code and so this can only provide a very limited one step self-improvement. Existing optimizers
can transform code into a functionally equivalent, more efficient form, but cannot identify the intent of an
algorithm and rewrite it for more effective results. The optimized version of a given compiler may compile
faster, but it cannot compile better. That is, an optimized version of a compiler will never spot new optimization
tricks that earlier versions failed to see or innovate new ways of improving its own program. Seed Al must be
able to understand the purpose behind the various elements of its design, and design entirely new modules that
will make it genuinely more intelligent and more effective in fulfilling its purpose.

"Theory of computation” it is a branch of mathematics which tells that the given problem can be solved or not
and if yes then which algorithm will give best result. Automata Theory is a branch of Theory of Computation
which tells us about the machine (theoretical model of computer) and their automaton. Since compilers based
on the grammar of the language which it takes as input, compiler having number of phases around 6 phases ,
first one is lexical analysis which uses finitie automata , second phase is syntax analysis which uses parser like
LALR etc .

Now come to Artificial Intelligence , cellular automata is an algorithm of Bio Inspired Al is an application of
Automata Theory.

Elevator works on principle of Deterministic Finite automata. To reach particular floor
IV. AUTOTUNING

Autotuning is related to hardware (and hardware-software) design space exploration

The process of analyzing various functionally equivalent implementations to identify the one that best meets
objectives.

Compiler-based Autotuning

Parameters and variants arise from compiler optimizations

Parameters such as tile size, unroll factor, prefetch distance

Variants such as different data organization or data placement, different loop order or other representation of
computation

* Beyond libraries

Can specialize to application context (libraries used in unusual ways)

Can apply to more general code

» Complementary and easily composed with application level support
V. CONCLUSION

We show how to compile high-level programs with security by smashing the stack. We believe this approach
provides a safer, more reliable alternative to security design. In this paper we have shown that self recursive
improvement which optimizes the code faster. In this paper mostly focused on structure of systems and

157|Page

https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Compiler_optimization
https://en.wikipedia.org/wiki/Algorithm

International Journal of Advance Research in Science and Engineering

Vol. No.4, Special Issue (01), September 2015

www.ijarse.c IJARSE
Jjarse.com [SSN 2319 - 8354

expressing/generating search space. As we gain experience with adaptive compilation, we hope to learn enough

about the behavior of the optimizations and their interactions to allow the compiler to perform all or part of the

search analytically.

VI. ACKNOWLEDGMENT

The author would like to thank SNIST, CSE department HOD and colleagues for the help with editing this

paper.
I thank Dr.Aruna Varanasi for their many valuable and thoughtful suggestions.

REFERENCES

[1]. M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested operations. In
10th ACM Conference on Computer and Communications Security, pages 220-230, 2003.

[2]. P. Laud. Semantics and program analysis of computationally secure information flow. In 10th European
Symposium on Programming (ESOP 2001), volume 2028 of LNCS. Springer-Verlag, Apr. 2001.

[3]. S. Callanan, D. J. Dean, and E. Zadok. Extending gcc with modular gimple optimizations. In Proceedings
of the GCC Developers’ Summit’2007, 2007.

[4]. G. Fursin, A. Cohen, M. O’Boyle, and O. Temam. A practical method for quickly evaluating program
optimizations. In Proceedings of the International Conference on High Performance Embedded
Architectures & Compilers (HIPEAC 2005), pages 29-46, November 2005.

[5]. J. Ullman. Principles of database and knowledge systems. Computer Science Press, 1, 1988.

[6]. B. Singer and M. Veloso. Learning to predict performance from formula modeling and training data. In
Proceedings of the Conference on Machine Learning, 2000.

[7]. John Backus. The history of Fortran I, Il, and IIl. In Wexelblat, editor, History of Programming
Languages, pages 25-45. Academic Press, 1981.

[8]. Keith D. Cooper and Nathaniel Mcintosh. Enhanced code compression for embedded RISC processors. In
Proceedings of the ACM SIGPLAN 99 Conference on Language Design and Implementation, May1999.

[9]. S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal algorithm for
approximate nearest neighbor searching _xed dimensions. J. ACM, 45(6):891{923, 1998.

[10]. W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D. Wonnacott. The Omega Library
interface guide. Technical Report CS-TR-3445, University of Maryland at College Park, Mar. 1995.

About Author

A.Yaganteeswarudu,Working as assistant professor in CSE department in Sreenidhi institute of science and
technology (Autonomous), Ghatkesar, Hyderabad, Andhra Pradesh. Having 6 Years of experience in teaching.
Completed M.Tech in SJICET, Kurnool in 2012.

Surekha Pinnapati,Completed BE at PDACE Gulbarga,Completed M.Tech at BIET

Davangere,Having 2 years of experience in teaching.Currently working in Dr.MVSIT.

158|Page

