International Journal of Advance Research in Science and Engineering
Vol. No.4, Special Issue (01), September 2015

i I[JARSE
www.ijarse.com

ISSN 2319 - 8354
AN EFFICIENT PERMISSION-BASED MUTUAL

EXCLUSION ALGORITHM FOR MOBILE AD-HOC
NETWORKS

Sanjida Singhani', Poonam Saini?

!Assistant Professor, Dept of CSE, Chandigarh University, Gharuan, Punjab, (India)
ZAssistant Professor, Dept of CSE, PEC University of Technology, Chandigarh, (India)

ABSTRACT

The problem of Distributed Mutual Exclusion (DME) has been studied significantly over the years. The
proposed protocols, in the existing literature, consider the various parameters, viz., liveness, fairness, message
complexity and safety for optimization. The problem of DME can be handled using two approaches, namely,
Token-based and Permission-based. In the paper, we propose an optimized Permission-based algorithm in
which the total number of messages has been considerably reduced with the help of a new message “Hold”. In
parallel, we have also reduced the number of sites to which a node has to send “Hold” message by applying
timestamp priority. Moreover, it will optimize t*n parameter, thereby, reducing the overall flow of “Hold”
messages in the proposed protocol. The paper also discusses the correctness proofs for static analysis of the
algorithm.

Keywords: Critical Section, Distributed Mutual Exclusion; Message Complexity , Mobile Ad-
Hoc Network.

I. INTRODUCTION

A Mobile Ad hoc network (MANET) is a self configuring infrastructureless network of mobile devices
connected by wireless channel [1]. It is an autonomous system of mobile nodes and associated hosts which
collectively form an arbitrary and dynamic topology [2]. In distributed mobile ad-hoc networks, processes must
share common hardware or software resources that assist each other to work independently at large scale [3].
Further, the access to a shared resource must be synchronized in order to ensure that, at any given time, only one
process utilizes the available resources. Each process has a code segment called a critical section (CS) for
accessing the shared resource [1]. Therefore, coordinating the execution of critical section is a big challenge.
The problem can be handled by providing a finite-time mutually exclusive access to the CS. Also, each process
must request permission to enter its critical section and release the same after exiting CS.
In the existing literature, there are two main approaches that have been proposed for solving the DME problem,
namely, centralized and distributed [2, 3]. In centralized approach, one of the nodes acts as a central coordinator.
Further, the central coordinator is fully responsible to store the complete information of incoming requests as
well as available resources so that the shared resource is best utilized.

65|Page

International Journal of Advance Research in Science and Engineering
Vol. No.4, Special Issue (01), September 2015
www.ijarse.c [JARSE
djarse.com ISSN 2319 - 8354
On the other hand, in distributed approach, the decision-making is distributed across the entire system. To
accomplish the task of achieving DME using distributed approach, the two principles as follows:
a) The existence of token in the system leading to Token- based algorithms.

b) The collection of permission from nodes in the system leading to Permission-based algorithm.

A. Token-Based Approach
In token-based approach, there are two methods of using token for entering into CS. The first method states that
only one process can enter CS by using a special object called token, which is unique to the whole system. Here,
token acts as privilege to a process for entering the CS [2]. A process, the current owner of the token, selects the
next token owner on the basis of priority. If no process wants to enter the CS, the token is held by the current
process itself.
On the other side, in the second method, the processes are logically organized in a ring structure where the token
is circulated from process to process, allowing them to enter into the CS [2]. After the process exits its CS, the
token is released for further circulation. However, in case, the process is not interested to enter CS, it passes the
token to the next node in the logical ring. Moreover, if the ring is unidirectional, starvation freedom is ensured.
Token-based approach has the following drawbacks:
e The token-based approach is highly prone to the loss of the token leading to a deadlock situation.

. Existence of duplicate tokens causes problem.

e For uniqueness of token, complex token regeneration must be executed.

B. Permission-Based approach

In the permission-based approach, the process is allowed to enter CS by explicitly acquiring permission from a
set of nodes or from all nodes, in the system. It is a non token-based approach. A priority in the form of logical
clocks or timestamps can be established for incoming requests [3]. When a node completes its execution and
exits from CS, it informs all other nodes from which it had received permission. Permission-based approach is
further divided into two types, i.e., voting-based and coterie-based [7]. In voting-based approach, vote
assignment to each node, is done in the system itself. Therefore, a node that wants to enter CS, seeks permission
from nodes that constitute the majority of votes. On the other side, in coterie-based algorithms, a collection of
quorums (i.e., set of nodes), is called a coterie which is attached to the system. Hence, a node seeking access to
CS must obtain permission from each and every node of quorum in the coterie [7]. Figure 1 (given below)

describes the flow of mutual exclusion algorithms.

66 |Page

International Journal of Advance Research in Science and Engineering
Vol. No.4, Special Issue (01), September 2015

i I[JARSE
www.ijarse.com

ISSN 2319 - 8354

Distributed Mutual Exclusion

Central Distributed
Approach Approach

L

Permission

Token Based Based

Voting Based Coterie Based

Fig 1: Flow Diagram of DME Approaches

Il. RELATED WORK
A. Time, Clocks, and the Ordering of Events in a Distributed System [Leslie Lamport, 1978].
The first solution for distributed permission-based mutual exclusion problem was proposed by Lamport in 1978,
popularly known as Lamport’s algorithm. It uses three types of messages: request, reply and release. In order to
serve the request messages, it uses the concept of logical clocks and assigns sequence numbers to the incoming
request i.e., timestamp [4]. Thereafter, every node maintains a queue of pending requests for entering into the
CS. When a node n; wants to execute CS, it broadcasts message to all other nodes and its corresponding request
is stored in a local queue. Further, a node n;after receiving the request message from n;, stores the message in its
own queue and sends a timestamped reply message. However, a node n; can access CS only when two
conditions are satisfied: Firstly, it must have received reply messages from all other processes with timestamps
greater than its own timestamped request. Secondly, the process” own request must be at the front of its queue.
When n; exits from the CS, it broadcasts a release message. The message complexity of this algorithm is 3(N-1).
B. An Optimal Algorithm for Mutual Exclusion in Computer Networks [G. Ricart and Ashok K. Agrawala
1981].
Ricart and Agrawala (RA) improved Lamport’s solution by reducing message complexity from 3(N-1) to 2(N-
1). The algorithm uses request and reply messages only, thereby, avoiding the release messages [5]. In case,
each node, either in CS or requesting CS, has a higher priority request, would not send the reply messages. A
node enters CS only after receiving permission from all nodes. When it exits from CS, it sends all reply
messages that have been deferred so far.
C. Mackawa’s O(\n) Distributed Mutual Exclusion Algorithm [M. Maekawa 1985].
Maekawa's algorithm introduced the concept of coterie by associating each node with a set of nodes. In its
design, there is always a node in the intersection of two subsets [7]. A node n; must obtain permission from all
other nodes in its home set, S;, before it can enter its CS. After exiting CS, it replies to node at the top of

requesting queue instead of sending message to all nodes in the queue. The number of messages required to

67|Page

International Journal of Advance Research in Science and Engineering
Vol. No.4, Special Issue (01), September 2015
www.ijarse.com , UfXRSE_
handle ‘a request is 3 times the size of the request set [7]. For a system with N nodes, the size of eacﬁsr'\eaagst 2'{;4
is roughly square root of N, therefore, total message complexity is 3VN.
D. Distributed Mutual Exclusion Algorithm for Mobile Computing Environments [Mukesh Singhal and D.
Manivannan Singhal 1997].
The authors proposed a concept of “look-ahead” technique to handle DME for infrastructured networks in
mobile environment. The technique, instead of enforcing mutual exclusion among all the sites of a mobile
system, enforces it only among the sites concurrently competing for CS [9]. This results in reduced message
overhead. Further, “look-ahead” mutual exclusion algorithms eliminates unnecessary communication among
sites, hence are more efficient. Here, message complexity is proportional to average number of active sites at
any time instead of the total number of sites in the system.
E. A Scalable Mutual Exclusion Algorithm for Mobile Ad Hoc Networks [Weigang Wu, Jiannong Cao, Jin
Yang in 2005].
The paper presented the first permission-based solution for DME problem for MANETSs. However, it uses
"look-ahead" technique, presented by M. Singhal [10] (for infrastructured mobile networks). The proposed
protocol has reduced message complexity in MANET environment. Also, the authors presented timeout
mechanism to deal with MANET susceptibility to link and host failures. It provides better performance under
high load situations, i.e., when more mobile hosts are active. Furthermore, the paper describes a conventional
method for fault tolerance in MANETS [9].
F. A Reliable Optimization on Distributed Mutual Exclusion Algorithm [Moharram Challenger, Peyman
Bayat and M.R. Meybodi 2006].
The paper proposes an asynchronous message passing algorithm for distributed system. In their work, notable
improvements are made on the number of messages exchanged. Like, a process P; on finishing CS sends a
FLUSH message to the concurrently requesting process, along with the next highest priority request, whose
requests was earlier deferred [11]. By examining these requests, P; can determine the order in which these
processes will execute CS. Using this, the following optimization are made. Assume P, has the highest priority
among all request messages. Then, P; can send reply just to Py, apprising Py of all the information that P; has
gathered instead of replying to m nodes. This leads to reduced message complexity [11], hence, enhancing the
performance of the system. Its message complexity fluctuates between (N-1) and 2(N-1) per critical section
access.
G. A Novel Permission-based Reliable Distributed Mutual Exclusion Algorithm for MANETs [Murali
Parameswaran and Chittaranjan Hota in 2010].
The approach introduced a new message called “Hold” in order to ensure that the requesting nodes are aware of
the currently executing node in CS. It uses an adaptable timeout mechanism to deal with critical sections having
varying execution times [13]. The paper presents an algorithm that can handle situations where the node in
critical section itself can fail, with the help of the “Hold” message and the adaptive timeout mechanism. It also
informs about the expected time a node remains in CS. Thus, it also resolves the issue that if a node has crashed
or executing a lengthy process. The major drawback is the increased message complexity of the algorithm with
the introduction of new message “Hold”. The improvement could be the reduction in the number of the sites to
which “Hold” has to be sent.

68|Page

International Journal of Advance Research in Science and Engineering
Vol. No.4, Special Issue (01), September 2015

i I[JARSE
www.ijarse.com

ISSN 2319 - 8354
I11. INFERENCES AND MOTIVATION

From the review of existing literature, the following inferences have been drawn:

1. Lamport’s algorithm suffered high message overhead. Moreover, the algorithm does not handle failures to
make the system fault-tolerant.

2. Ricart Agrawala proposed an improved version of Lamport’s algorithm. However, it suffered from single
point of failure as well as incurs high message complexity.

3. In Maekawa algorithm, there is no defined order for messages that are sent to the subset of nodes, which in
case of communication delay, leads to deadlock situations.

4. Communication delays are typical in a MANET environment. To handle this, new algorithms were
proposed with new message like FLUSH and Hold. Although, the protocols resolves deadlock problem,
however, they incurs increased message complexity.

The prime motivation of our proposed algorithm is to ensure that there is less message traffic with the existence

of new message and at the same time guarantees deadlock freedom. The proposed approach works on the

reduction of number of sites to which a node has to send “Hold” message by applying timestamp priority. This

will optimize the reduced flow of messages in the system.

IV. SYSTEM MODEL AND ASSUMPTIONS

We consider a MANET comprising of N nodes (No-N.1y), €ach having unique identification number, ldno and a
particular timestamp value, T_cs; (timestamp value of i node to retain the critical section). Further, the mobile
nodes forming dynamic topology communicate with each other as well as access the shared resource in a
wireless channel through asynchronous message exchanges. Moreover, only one process accesses the available
shared resource. Therefore, the requesting nodes are notified about the exit time of the current node, to access
the critical section. This will also ensure that the current node in the CS has not arbitrarily failed or crashed. It
has been presumed that Link and Node failures may occur, although, data can be recovered, either by resetting

the values, or by using older set of values. The system model imposes a finite time on the access of CS by a

particular node, thereby, maintain liveness into the system.

V. OVERVIEW OF ALGORITHM

A. Data Structures Used

i) Idno: A unique identification number of each node.

i) REQ_que: A queue which is maintained by the node in the CS to keep track of the Request messages
to access CS.

iii) HOLD_que: A queue which is maintained by the node, currently in the CS, to keep the track of

number of nodes to send the “Hold” messages.

iv) T_req: A vector to keep track of the timeout values of REQ messages.
V) T_csi: A vector to keep track of time upto which a node retains the CS.
Vi) Tcs_exit: A vector to maintain the amount of time left for current node to exit CS.

69|Page

International Journal of Advance Research in Science and Engineering

Vol. No.4, Special Issue (01), September 2015

www.ijarse.com , .UARS]? -

vii) ‘ Inft_set: An array maintained by each node to keep track of nodes to send REQ messzilgk%\aznjélgseifk34

permission before entering CS.

B. Types of Messages Used

. Request for Critical section, REQ: When a mobile node wants to access critical section, it will send
request, REQ, to all nodes in its Inft_set. However, the nodes which are not demanding CS, will respond to
the requesting node by sending immediate Reply or “Hold” message. Also, T_req is set, which gives the
estimate of round trip time between nodes.

e Reply message: When the nodes in the Inft_set gets REQ, which contains identification number and
timestamp value. Nodes themselves check if they are requesting for CS or not, then they send immediate
Reply message (if not requesting). After getting Reply from all nodes in its Inft_set, it enters CS.

. Hold message: While the node is in the critical section, if it gets REQ then it will send “Hold” message
which encloses Tcs_exit, which specifies the amount of time left for it to exit the critical section.

In MANETS, suppose, there are many nodes that are requesting for CS simultaneously, sending “Hold” message

to all by current node in CS becomes overhead. Therefore we use the concept of low timestamp value here, the

nodes with low timestamp value in their REQ will be send “Hold”” message to notify the amount of time left by
current node to exit CS.

C. Brief Outline

In the mobile ad hoc environment, the working of proposed algorithm is divided into two scenarios. In both the

scenarios, the commonalities are:

i) We assume that there are four mobile nodes, No,N;,N;and Nsforming MANET.

i) Each mobile node has its own identification number, Idno.

iii) When a node wants to enter CS, it sends request to other nodes and waits for their Reply, thereby using

them as permission (either “Hold”” or Reply) to enter into the CS.

D. Scenariol

Initially, we assume that there is no node in the CS and also, Request queue, REQ_que is empty. Suppose, at
some interval, mobile node N wants to enter CS. It sends Request, REQ that possess its identification number
and timestamp value, to its own Inft_set. All nodes in the Inft_set, if not interested in accessing CS, will reply to
the node Ny by sending Reply message as permission to the node. After obtaining all Replies, N enters into

CS. The algorithm for entering into CS is discussed below in the form of pseudo code given in table 1:

70|Page

International Journal of Advance Research in Science and Engineering
Vol. No.4, Special Issue (01), September 2015
[JARSE

www.jarse.com ISSN 2319 - 8354

/Imobile node Ny wants to enter CS

proc Send_REQ

Begin

{
Set Np Idno;
SetNo T csi; /ltime to retain CS
for (N1, Ny, ... Ny e info_sety)

Send REQ (Idno + T_cs;);
Set T_req for every REQ ;
If (N1, N, ... Ny are not demanding CS)

{
Send “Reply” to No;

}
No enters CS.

End

Tablel. Algorithm for requesting CS
E. Scenario2
In the second scenario, we have proposed an algorithm where Ny is already in CS. Further, N, and N3 want to
access the CS simultaneously. Nodes N, and Ns; will send REQ embedded with the timestamps, to their
corresponding Inft_sets. As Ny is present in the Inft_set of both the nodes, timestamp priority is used to break the
symmetry of concurrent request messages. Among the requesting nodes, the one with low timestamp, T_cs, will

receive “Hold” message from Ng, shown in Fig2

Fig 2: Concurrent request from N, and N3 while Ngin CS

71|Page

International Journal of Advance Research in Science and Engineering
Vol. No.4, Special Issue (01), September 2015

b I[JARSE
www.ijarse.com

ISSN 2319 - 8354

Request message ———»

Reply message - >

Hold message @ €¢—_,

Following table presents the pseudo code of the second scenario:

/I Ng in CS, N, and N; demands for CS
simultaneously
Begin
Set N, Idno + T_cs;;
Set N3 Idno + T_cs;
N, send REQ (No, Ny N3 e info_set;);
Nssend REQ (No, Ny N; e info_sets);
If (N;doesn’t demand CS)
{
Send “Reply message” ;
}
else N, and N; waits;
for (N inCS)
{
Add N;and N3REQs to REQ_que of Ny ;
Compare T_cs; of all REQ (REQ_que);
Send “Hold” message to low T csi, Ny ;
Set Tcs_exit; // for every “Hold” messagel/
Add N; to “HOLD” que;

}
Np exit CS;
N, enters CS;
}
End

Table 2: Algorithm for Hold Message
VI. PROOF OF CORRECTNESS

The section discusses the proof of three properties Liveness, Fairness and Safety, to ensure the correct working
of the proposed algorithm.

Theorem 1: With the help of “Reply” and “Hold” message, the algorithm ensures fairness as well as
determines the waiting time.

72|Page

International Journal of Advance Research in Science and Engineering

Vol. No.4, Special Issue (01), September 2015

www.ijarse.com , .UARS]? -
Argumént: Assume that a mobile node N; wants to access critical section while another node lilﬁsz;%?ea%iy
executing CS. Any site that belongs to the information set as well as requesting CS simultaneously, receives
either a Reply message or a “Hold” message. The Reply messages are sent immediately by the nodes which are
not demanding CS access. On the other side, the “Hold” message is sent by the node N;, currently in CS. This
informs about the waiting time to the requesting node. Further, if more than one process request for CS at the
same time, the decision of sending “Hold” message is made on the basis of their timestamp values. Also, it
proves that only one process per node executes the CS

Theorem 2: The algorithm ensures liveness.

Proof: Presuming a situation, when more than one node requests for the CS access, simultaneously. Since, each
request in the proposed algorithm is timestamped, which is already received by every node in the Inft_set.
Therefore, based on the timestamp priority, requesting node with lower timestamp value will be sent a “Hold”
message. Also, the node is notified about its waiting time. This ensures CS availability to all nodes and
therefore, guarantees liveness of the system.

Theorem 3: The algorithm ensures Safety.

Proof: Without the loss of generality, frequent node/link failures occur in dynamic MANET environment. This
results in the loss of messages. If the failed or crashed link/node is not in Inft_set and is not waiting for Reply,
then there will be no effect on the execution. Whenever link/node failure occurs, it will recover after retrying
time period or resetting to the older values. Thereafter, resuming to its normal functions, it can participate in the

network execution, thereby, ensuring safety.

VIl. PERFORMANCE

In proposed algorithm, the message complexity will exceed 2(#-1) because of using additional “Hold” message.
However, the proposed algorithm reduces total number of “Hold” messages when compared to [13]. The

message complexity will be [2(,-1) +t*n] where t is the timeout period and n is number of nodes in HOLD_que.

In the algorithm, we have optimized the t*n parameter by reducing n factor and applying timestamp priority,

thereby, leading to controlled flow of messages in the system.

VI1I. CONCLUSION

Various solutions have been proposed in the literature for achieving DME using Token-based and Permission-
based approach. In Permission-based solutions, a process that requests to access CS must receive permission
from all nodes in its information set by message exchanges. However, the number of messages exchanges is
large in the existing literature. The proposed work focus on the reducing the number of message exchanged

including new message “Hold”, thereby, optimizing t*n parameter. Further, this reduces the overall latency,

thus, increasing the performance of the system.

REFERENCES

[1] B.D. Kshemkalyani and M. Singhal, Distributed mutual exclusion algorithms in Distributed
Computing Principles, Algorithms and Systems, 1st ed. Cambridge University Press, May 2008.

73|Page

International Journal of Advance Research in Science and Engineering
Vol. No.4, Special Issue (01), September 2015

www.ijarse.com

(2]

[3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

I[JARSE
ISSN 2319 - 8354
G. Coulouris, J.Dollimore, Tim Kindberg, Distributed System concept and Design Addison-Wesley,
Pearson Education, 2001.

Tanenbaum, A.S., and Steen M.V, Distributed Systems Principles and Paradigms, Prentice-Hall
International, Inc, 2002.

Lamport, L. “Time, clocks and the ordering of events in a distributed system.,” Comm. A CM 21, pp
558-565, 7 July 1978.

G.Ricart and A. K. Agrawala, “An Optimal Algorithm for Mutual Exclusion in Computer Networks,”
Communications of the ACM, pp 9-11, 1981.

Maekawa, M., Oldehoeft, A.E., and Oldehoeft, R.R, Operating Systems Advanced Concepts, Menlo
Park, CA: Benjamin/Cumings, pp:200-208, 1978.

M Maekawa, “A VN algorithm for mutual exclusion in decentralized systems,” ACM Trans on
Computer Systems, Vol. 3, No 2, pp. 145-159, May 1985.

M. Singhal, “A Taxonomy of Distributed Mutual Exclusion”, Journal of Parallel and Distributed
Computing 18(1), pp.94-101, 1993.

M. Singhal, and D. Manivannan, “A Distributed Mutual Exclusion for Mobile Environments”, Proc.
IASTED Intl. Conf. on Intelligent Systems, pp 557-561, 1997.

Weigang Wu, Jiannong Cao, Jin Yang, “A Scalable Mutual Exclusion Algorithm for Mobile Ad Hoc
Networks,” Proc. of the 14th International Conference on Computer Communications and Networks
(ICCCN2005), San Diego, USA, Oct. 17-19, 2005.

Moharram Challenger, Peyman Bayat and M.R. Meybodi, “A Reliable Optimization on Distributed
Mutual Exclusion Algorithm” TRIDENTCOM, 2006

Bharath Kumar A.R. and Pradhan Bagur Umesh , “An Improved Algorithm for Distributed Mutual
Exclusion by Restricted Message Exchange in Voting Districts” in 11th International Conference on
Information Technology, 2008.

Parameswaran, Murali; Hota, Chittaranjan, “A novel permission-based reliable distributed mutual
exclusion algorithm for MANETSs,” Wireless And Optical Communications Networks (WOCN), 2010
Seventh International Conference On, vol., no., pp.1-6, 6-8 Sept. 2010.

Parameswaran, M.; Hota, C., “Arbitration-based Reliable Distributed Mutual Exclusion for Mobile Ad-
hoc Networks”, Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, 2013 11th
International Symposium and Workshops on, vol., no., pp.380-387, May 13-17, 2013.

K. Erciyes, “Distributed mutual exclusion algorithms on a ring of clusters” ,Proc. of International
Conference on Computational Science and Its Applications ICCSA 2004, vol. 3045/2004, LNCS,
SpringerVerlag, May 2004, pp 518-527. doi: 10.1007/b98053.

I. Suzuki and T. Kazami, “A distributed mutual exclusion algorithm,” ACM Trans on Computer

Systems, Vol.3, No.4, pp 344-349, Nov 1985.

74|Page

http://www.awl-he.com/

