International Journal of Advance Research in Science and Engineering Vol. No.4, Issue 08, August 2015

www.ijarse.com

JARSE SSN 2319 - 8354

STUDY OF SELECTION BEHAVIOUR OF STANDARD OBSERVORS FOR BEST HUE COLOUR PATCHES BETWEEN THE FLORESCENT LIGHT AND U30 LIGHT

Ambrish Pandey¹, Prof. (Dr.) Rajendrakumar Anayath²

¹Associate Professor, Department of Printing Technology, GJUS&T, Hisar, Haryana (India)

²Director, The Technological Institute of Textile & Sciences, Bhiwani, Haryana (India)

ABSTRACT

This paper analyzes the variation in judgment for selection of best hue from colour patches between Florescent and U30 light the experiments for his study is performed in adherence with the ISO Standards and the results of this study shows that the trend for selecting next towerds higher density patches in Yellow and Cyan colour, opposite in Magenta colour and no change in case of Black colour.

Keywords: Hue, Colour, Print Contrast, Density, Standard Observer.

I. INTRODUCTION

Colors also look different due to optical illusions, background difference and individual differences. Therefore apart of above these hue influencing factors this study is made to analyze the variation in judgment for selection of best hue from colour patches between the Florescent and U30 light.

II. RESEARCH METHODOLOGY

For this study, first of all a suitable master was prepared after considering many changes with a continuous wedge of solids along with dot gain patches and experiment was carried out with following material and specifications.

For this study, Bilt C2S Art Paper Royal Gloss 130 GSM was selected for printing. Plates were prepared by CTP. The press room conditions were set as relative humidity of pressroom was 45-46 percent, the temperature was 28-30°C and pH of the dampening solution was maintained 5.1. The master was designed in such a way that value of density and other values can be measured easily in effective way and same was printed using LT Spectro process ink. All the printing is done on 'ADAST Dominant 725 P' machine at 3000 I.P.H.

The printed sheets with different densities from one end to other end keeping the variation with 0.05 densities. The sheets be allowed to dry and after 8 hours, the 'Lab' and 'Print Contrast' are measured on each density patches, and the curve depicting different LAB and contrast values are captured accordingly using X-Rite eXact instrument. To make the analysis more justified by human perception the same sheets were given to 10 on line Fransworth-Munsell 100 hue color vision test qualified Standard Observers and and final colour

Vol. No.4, Issue 08, August 2015

www.ijarse.com

IJARSE

ISSN 2319 - 8354 analyzed and

judgment procedure were done on X-Rite's Macbeth Lighting Booth. Which are recorded, analyzed and represented. All the parameters like Paper, Ink, Measuring Conditions, and Measuring Instruments etc. were maintained in compliance with ISO specifications.

III. TEST CHART

The elements of the test chart used in this study consists

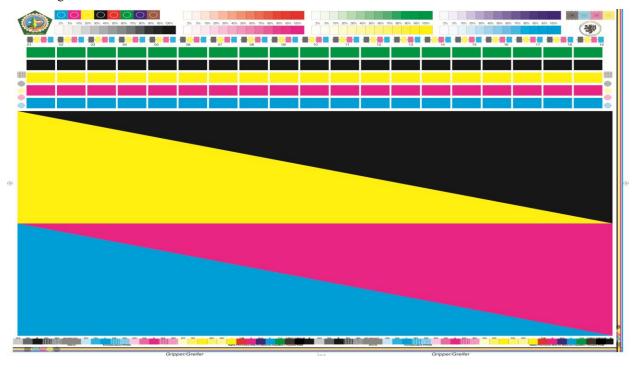
Solid bars of CMYK.

Colour control strip along the length Colour control strip along the length (Digital Print control strip for electronic Imposition / Thomson Press).

Solid triangles of 155 square cm area for each triangle in which consumption of ink is high to low from left to right for Y&C and opposite for M&K.

Solid colour 19 patch strip of 1.3 x 2.5 cm of CMYKG colours.

Ugra/ Slur doubling patches of YMC and K colours and screen (Twice).


Ink key zone wise CMYK patches of 75 % dot patches for all 19 ink zones.

2-100% dot patch strip of RGBCMYK dot patches.

Logo of GJUS&T and Wuppertal University.

Plate blanket pressure and ink fill indicator patch.

Colour registration marks.

IV. DATA COLLECTION AND ANALYSIS

The patch numbers selected by Standard Observers in U30 Light after selecting an appropriate patch in florescent light for all ten sample sheets are first tabulated and their selection trends towards higher, lower and same patches are tabulated below:

Vol. No.4, Issue 08, August 2015

www.ijarse.com

IJARSE								
ISSN	2319	- 8354						

Sheet No.	1	2	3	4	5	6	7	8	9	10	Frequency
CYAN COLOUR PA	TCHES										
Low to High Patch	4	4	3	4	4	3	2	7	6	6	43
No.											
High to Low Patch	2	1	4	1	2	2	3	2	2	2	21
No.											
Same Patch No	4	5	3	5	4	5	5	1	2	2	36
MAGENTA COLOU	R PATO	CHES									
Low to High Patch	4	3	4	3	4	1	4	4	3	3	33
No.											
High to Low Patch	2	2	3	1	4	2	2	5	3	3	27
No.											
Same Patch No.	4	5	3	6	2	7	4	1	4	4	40
YELLOW COLOUR PATCHES											
Low to High Patch	5	3	3	2	6	3	3	3	5	5	38
No.											
High to Low Patch	2	1	3	4	3	1	5	2	4	4	29
No.											
Same Patch No.	3	6	4	4	1	6	2	5	1	1	33
BLACK COLOUR P.	ATCHE	S									
Low to High Patch	4	2	3	4	5	6	2	3	0	0	29
No.											
High to Low Patch	1	3	4	2	2	2	5	2	3	3	27
No.											
Same Patch No.	5	5	3	4	3	2	3	5	7	7	44

V. RESULT & ANALYSIS

After seeing trends of results and analysis of tabular data the observations from this study are as following:

In case of Cyan color, U30 light selection in comparison with florescent light by maximum standard observers shows the trend for selection of little higher density and lower contrast patches.

In case of Magenta color, U30 light selection in comparison with florescent light by maximum standard observers shows the trend for selection of little lower density and lower contrast patches.

In case of Yellow color, U30 light selection in comparison with florescent light by maximum standard observers shows the trend for selection of little higher density and higher contrast patches.

In case of Black color, U30 light selection in comparison with florescent light by maximum standard observers

Vol. No.4, Issue 08, August 2015

www.ijarse.com

shows the trend for similar selection of density and contrast patches.

IJARSE ISSN 2319 - 8354

VI. CONCLUSION

Conclusions from above analysis is that the trend for selection of hue in case of florescent light and U30 light is not similar for process colors the results of this study shows that the trend for selecting next or higher density patches in Yellow and Cyan colour, opposite in Magenta colour and no change in case of Black colour.

REFERENCES

- [1]. Cheng, Heng-Da and Ying Sun (2000), 'A Hierarchical Approach to Colour Image Segmentation Using Homogeneity', Ieee Transactions on Image Processing, Vol. 9, No. 12, pp. 2071-2082.
- [2]. Colorimetry, CIE Publication No. 15.2, 2nd ed. Vienna, Central Bureau of the CIE, 1986, pp. 66-67.
- [3]. Dabrowa, Tomasz and Dariusz Dziewulski (2009), 'Study of the dependence of colour Gamut Volume Determined with Different Methods on reflection Densities of the Process Inks Solids in Printing', IC Journal, Issue 2, pp.15-23.
- [4]. Debeljak, Mirica, Diana Gregor-Svetec (2011), 'Influence of Dry-Heat Ageing on Offset and UV Inkjet Prints on Synthetic Paper', IC Journal, Issue 4, pp. 28-31.
- [5]. Dharavath, H. Naik, Ted M. Bensen and Bhaskar Gaddam (2005), 'Analysis of Print Attributes of Amplitude Modulation (AM) vs. Frequency Modulation (FM) Screening of Multi-color Offset Printing', Journal of Industrial Technology, Vol. 21, No. 3, pp. 2-10.
- [6]. Ekroll, Vebjorn, Franz Faul and Reinhard Niederee (2004), 'The peculiar nature of simultaneous colour contrast in uniform surrounds', Pre-print submitted to Elsevier Pre-print, 11 Feb. 2004, pp.1-38.
- [7]. Endredy, Hab I. and Hab I. Patko (2011), 'Colour Quality Mesuerment of digital versus sheet fed offset printing products', IC Journal, Issue 4, pp. 24-27.
- [8]. Fairman, H. S., M. H. Brill and H. Hemmendinger (1977), 'How the CIE 1931 colormatching functions were derived from the Wright-Guild data', Color Research Application, Vol. 22, No. 1, pp.11-23.
- [9]. Guild, J. (1931), 'The colorimetric properties of the spectrum', Philosophical Transactions of Royal Society, London, Series A, 230, 149-187.
- [10]. Harrison, W. (1953), 'A check on the standard observer data at 4358 A', British Journal of Applied Physics, Vol. 4, No. 3, 11/01/2014, 8:19 am.
- [11]. Johnson, Garrett M., Xioyan Song, Ethan D. Montag and Mark D. Fairchild (2010), 'Derivation of a Color Space for Image Color Difference Measurement', COLOR Research and Application, Vol. 35, Number 6, December 2010.
- [12]. Judd, Deane B. (1933), 'The 1931 I.C.I. Standard Observer and Coordinate System for Colourimetry', Vol. 23, Issue 10, pp. 359-373.
- [13]. Kipphan, Helmunt (ed.) (No Date), Handbook of Print Media, Springer, Heidelberg New York.
- [14]. Mahy M., Van Eycken and Oosterlinck (1994), 'Evaluation of uniform color spaces developed after the adoption of CIELAB and CIELUV', John Wiley 7 Sons, Vol. 19, no. 2, pp. 105-121.
- [15]. Michael, Bornstein (1968), 'Color and Its Measurements', Journal of the Society of Cosmetic Chemists, Vol. 19, pp. 649-667.

Vol. No.4, Issue 08, August 2015

www.ijarse.com

IJARSE ISSN 2319 - 8354

- [16]. Sarkar, A. and L. Blondé (2013), 'Colourimetric Observer Categories and Their Applications in Colour and Vision Sciences', CIE Centenary Conference, April 2013.
- [17]. Sharma, Abhay (2004), Understanding Color Management, Thomson Learning Inc., USA.
- [18]. Simonot, Lionel, Mathieu Hébert, Damien Dupraz (2011), 'Goniocolorimetry: from measurement to representation in the CIELAB colour space/, Wiley Periodicals, Vol. 36, Issue 1, pp. 1-10.
- [19]. Smith, T. and J. Guild (1931-32), 'The CIE colorimetric standards and their use', Transactions of Optical Society, London, 33, 73-134.
- [20]. Watson, Andrew B. and Albert J. Ahumada (2005), 'Spatial Standard Observer for Visual Technology', Journal of Vision, 11/01/2014, 7:46 am.
- [21]. Xiao, Feng, Joyce E. Farrell, Jeffrey M. DiCarlo and Brian A. Wandell (2003), 'Preferred Color Spaces for White Balancing', Proceedings of SPIE-IS&T Electronic Imaging, Vol. 5017, pp. 342-350.
- [22]. http://wp.tx.ncsu.edu/colour-science-lab/current-research/colour-perception/
- [23]. http://en.wikipedia.org/wiki/Metamerism_(colour)
- [24]. http://www.ies.org/pdf/education/IES-Colour-3-Webcast-Handout.pdf
- [25]. http://en.wikipedia.org/wiki/File:CIE_1931_XYZ_Colour_Matching_Functions.svg
- [26]. http://en.wikipedia.org/wiki/CIE_1931_colour_space 11/01/2014 7:44am
- [27]. http://www.konicaminolta.com/instruments/knowledge/colour/part4/img/img_02-1.gif 11/01/2014 7:50 am
- [28]. http://www.wmich.edu/pci/IMAGES/fig2_9.jpg 1/11/2014 7:58 am
- [29]. http://www.wmich.edu/pci/IMAGES/gp4.jpg 1/11/2014 7:57 am
- [30]. http://www.wmich.edu/pci/colourspec/PP3.HTM 1/11/2014 7:57 am
- [31]. http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.219.1673 1/11/2014 8:08 am
- [32]. www.hunterlab.com/an-1002b.pdf
- [33]. http://vision.arc.nasa.gov/modelfest/
- [34]. http://iopscience.iop.org/0508-3443/4/3/304/pdf/0508-3443_4_3_304.pdf
- [35]. www.wmich.edu/pci/colourspec/PP3.HTM
- [36]. en.m.wikipedia.org/wiki/CIE_1931_colour_space
- [37]. www.jamesclar.com/artwork/standard-observer
- [38]. http://www.ijarcsse.com/docs/papers/June2012/Volume_2_issue_6/V2I600207.pdf 13/01/2014 12:22 am
- [39]. http://www.konicaminolta.com/instruments/knowledge/color/part2/06.html 25/04/2015 12:59 am
- [40]. http://www.slideshare.net/KonicaMinoltaSensing/precise-color-communication-30914629 20/04/2015 10:22