International Journal of Advance Research in Science and Engineering Vol. No.4, Issue 08, August 2015

www.ijarse.com

STRONG DOMINATING χ - COLOR NUMBER ON SUM AND CARTESIAN PRODUCT OF GRAPHS

T.Ramachandran¹, D.Udayakumar², A.Naseer Ahmed³

¹Department of Mathematics, M.V.M Government Arts College for Women, Dindigul, (India)

²Department of Mathematics, Government Arts College, Karur, (India)

³Department of Mathematics, K.S.R College of Arts and Science, Thiruchengode, (India)

ABSTRACT

Let G = (V, E) be a graph. We define strong dominating χ -color number of a graph G as the maximum number of color classes which are strong dominating sets of G, and is denoted by $\operatorname{sd}_{\chi}(G)$, where the maximum is taken over all χ -coloring of G. This paper determines the exact values of strong dominating χ -color number of sum and Cartesian product of graphs.

Keywords: Dominating χ -color number, Fan graph, Grid graph, Helm graph, Ladder graph, Prism graph. Stacked Book graph, Strong dominating χ -color number,

1. INTRODUCTION

In this paper, we consider finite, connected, undirected and simple graph G = (V(G), E(G)) with vertex set V = V(G) and edge set E = E(G). The number of vertices |V(G)| of a graph G is called the order of G and the number of edges |E(G)| of a graph G is called the size of G. The order and size is denoted by n and m respectively. In graph theory, coloring and dominating are two important areas which have been extensively studied. The fundamental parameter in the theory of graph coloring is the chromatic number $\chi(G)$ of a graph G which is defined to be the minimum number of colors required to color the vertices of G in such a way that no two adjacent vertices receive the same color. If $\chi(G) = k$, we say that G is k – chromatic [1]. For any vertex $v \in V(G)$, the open neighborhood of v is the set $N(v) = \{u \mid uv \in E(G)\}$ and the closed neighborhood is the set $N[v] = N(v) \cup \{v\}$. Similarly, for any set $S \subseteq V(G)$, $N(S) = \bigcup_{v \in S} N(v) - S$ and $N[S] = N(S) \cup S$. A set S is a dominating set if N[S] = V(G). The minimum cardinality of a dominating set of G is denoted by $\gamma(G)[4]$. A set $D \subseteq V$ is a dominating set of G, if for every vertex $x \in V - D$ there is a vertex $y \in D$ with $xy \in E$ and D is said to be strong dominating set of G, if it satisfies the additional condition $deg(x) \leq deg(y)$ [2]. The strong domination number $\gamma_{st}(G)$ is defined as the minimum cardinality of a strong dominating set. A set $S \subseteq V$ is called weak dominating set of G if for every vertex $u \in V - S$, there exists vertex $v \in S$ such that $uv \in E$ and $deg(u) \ge deg(v)$. The weak domination number $\gamma_w(G)$ is defined as the minimum cardinality of a weak dominating set and was introduced by Sampathkumar and Pushpa Latha [3]. The number of maximum degree

www.ijarse.com

vertices of G is denoted by $n_{\Delta}(G)$ and the number of minimum degree vertices of G is denoted by $n_{\delta}(G)$. All the basic notations of graph theory are referred in [4].

II. TERMINOLOGIES

We start with more formal definition of dominating- χ -color number of G [5]. Let G be a graph with $\chi(G) = k$. Let $C = V_1, V_2, ..., V_k$ be a k-coloring of G. Let d_C denotes the number of color classes in C which are dominating sets of G. Then $d_{\chi}(G) = \max_{C} d_{C}$ where the maximum is taken over all the k-colorings of G, is called the dominating- χ -color number of G. Instead of dominating set in the definition of dominating- χ -color number, if we consider strong dominating set, then it is called strong dominating χ -color number, if we consider weak dominating set, then it is called weak dominating- χ -color number[6]. A grid graph $G_{m,n}$ [7], Helm graph H_n [8], Fan graph H_n [9], Ladder graph H_n [9], Prism graph H_n [9] and stacked book graph H_n [10], are some of the sum and Cartesian product of graphs.

III. STRONG DOMINATING -χ- COLOR NUMBER ON SUM OF GRAPHS

The new parameter, strong dominating χ - color number and weak dominating $-\chi$ - color number defined by us in [11]. The following are some of our observed propositions,

Proposition:

- 1. For any graph G, $1 \le sd_{\gamma}(G) \le d_{\gamma}(G)$
- 2. For any graph $G, 1 \leq wd_{\gamma}(G) \leq d_{\gamma}(G)$
- 3. For any star graph $K_{1,n}$, $sd_{y}(K_{1,n}) = 1$
- 4. For any complete graph K_n ; $sd_x(K_n) = n$
- 5. For any cycle C_n ; $sd_{\chi}(C_n) = \begin{cases} 3, & \text{if } n \equiv 3 \pmod{6} \\ 2, & \text{otherwise} \end{cases}$
- 6. If W_n , is any wheel with n > 4, then $sd_r(W_n) = 1$.
- 7. For any path P_n , $sd_{\chi}(P_n) = \begin{cases} 1 & \text{if } n = 3 \\ 2 & \text{if } n \neq 3 \end{cases}$

Theorem 3.1:

For any graph G, $sd_{\chi}(G) \leq n_{\Delta}(G)$ and $wd_{\chi}(G) \leq n_{\delta}(G)$.

Proof

If the graph G has the number of $n_{\Delta}(G)$ vertices which has maximum degree, then by the definition of strong dominating χ – color number $sd_{\chi}(G)$, it is clear that strong dominating set should contain at least one vertex that has maximum degree Δ . Since $n_{\Delta}(G)$ is the number of vertices which has maximum degree of graph. It is possible to have at most $n_{\Delta}(G)$ strong dominating set. Therefore $sd_{\chi}(G) \leq n_{\Delta}(G)$. Similarly, we can easily prove $wd_{\chi}(G) \leq n_{\delta}(G)$.

There is an open problem mentioned in [11], that characterize the class of graphs with $sd_{\chi}(G) = 1$ and $wd_{\chi}(G) = 1$. The following theorem gives the necessary condition for that.

Vol. No.4, Issue 08, August 2015

www.ijarse.com

ISSN 2319 - 8354

Theorem 3.2:

- a. If G has an isolated vertex, then $sd_{\chi}(G) = 1$
- b. If G has an isolated vertex, then $wd_{\gamma}(G) = 1$
- c. If G has $n_{\Delta}(G) = 1$, then $sd_{\gamma}(G) = 1$
- d. If G has $n_{\delta}(G) = 1$, then $wd_{\gamma}(G) = 1$

Proof

If the graph G has an isolated vertex, v, then the vertex v is dominated by only one vertex, say u. So it is clear that the color class which has a vertex u, is the dominating set. There fore $d_{x}(G) = 1$.

- a) By proposition 1, $sd_{\gamma}(G) \leq d_{\gamma}(G)$, then $sd_{\gamma}(G) = 1$.
- b) By proposition 2, $wd_{\gamma}(G) \le d_{\gamma}(G)$, then $wd_{\gamma}(G) = 1$.
- c) If the graph G has the number vertices which has maximum degree, $n_{\Delta}(G) = 1$. By the definition of strong dominating χ – color number $sd_{\chi}(G)$, it is very clear that strong dominating set should contain at least one vertex that has maximum degree Δ . Since $n_{\Delta}(G) = 1$, It is possible to have only one strong dominating set. Therefore $sd_{\gamma}(G) = 1$.
- d) If the graph G has the number vertices which has minimum degree, $n_{\delta}(G) = 1$. By the definition of weak dominating χ -color number $wd_{\gamma}(G)$, it is very clear that weak dominating set should contain at least one vertex that has minimum degree δ . Since $n_{\delta}(G) = 1$, it is possible to have only one weak dominating set. Therefore $wd_{\gamma}(G) = 1$.

We proved the following Lemma 3.2 in [11].

Lemma 3.2

Let G_1 and G_2 be two graphs. The sum G_1+G_2 is the graph having vertex set V $(G_1) \cup V$ (G_2) and edge set E $(G_1) \cup E(G_2)$ together with all the edges joining the points of $V(G_1)$ to the points of $V(G_2)$. Then

$$1. \quad \textit{sd}_{\chi}\left(G_{1}+G_{2}\right) = \, \textit{sd}_{\chi}\left(G_{1}\right) + \, \textit{sd}_{\chi}\left(G_{2}\right) \, if \, \left|V\left(G_{1}\right)\right| - \, \Delta(G_{1}) = \left|V\left(G_{2}\right)\right| - \, \Delta(G_{2}).$$

2.
$$sd_{r}(G_1 + G_2) = sd_{r}(G_1)$$
 if $|V(G_1)| - \Delta(G_1) < |V(G_2)| - \Delta(G_2)$.

Instead of discussing on both strong and weak, we are going to prove only strong dominating χ - color number in the following theorems to avoid the repeating arguments.

Theorem 3.3: Let G be a Fan graph
$$F_{m,n}(n \neq 3)$$
. Then $sd_{\chi}(G) = \begin{cases} 1 & \text{if } m < n-2 \\ 2 & \text{if } n-2 < m \\ 3 & \text{if } m = n-2 \end{cases}$

Proof

By the definition of Fan graph, $F_{m,n} = \overline{K_m} + P_n$

Now by Lemma -3.2, it is clear that,

If
$$m = n - 2$$
, for $n \neq 3$ then $sd_{\chi}(\overline{K_m} + P_n) = sd_{\chi}(\overline{K_m}) + sd_{\chi}(P_n) = 1 + 2 = 3$

If
$$m < n-2$$
, for $n \neq 3$ then $sd_{\chi}(\overline{K_m} + P_n) = sd_{\chi}(\overline{K_m}) = 1$

If
$$m > n-2$$
, for $n \neq 3$ then $sd_{\chi}(\overline{K_m} + P_n) = sd_{\chi}(P_n) = 2$

www.ijarse.com

IJARSE ISSN 2319 - 8354

Theorem 3.4: Let G be a Fan graph $F_{m,3}$. Then $sd_{\chi}(G) = \begin{cases} 1 & \text{if } m \neq 1 \\ 2 & \text{if } m = 1 \end{cases}$

Proof

By the definition of Fan graph, $F_{m,3} = \overline{K_m} + P_3$

Now by Lemma -3.2,

When m = 1, that is, for n = 3, m = n - 2 = 1 then,

$$sd_{\gamma}(\overline{K_m} + P_3) = sd_{\gamma}(\overline{K_m}) + sd_{\gamma}(P_3) = 1 + 1 = 2$$

When $m \neq 1$, that is, for n = 3, $m \neq n - 2 = 1$ then,

$$sd_{\gamma}(\overline{K_m} + P_3) = sd_{\gamma}(\overline{K_m}) = 1 \text{ or } sd_{\gamma}(\overline{K_m} + P_3) = sd_{\gamma}(P_3) = 1$$

IV. STRONG DOMINATING - χ - COLOR NUMBER ON CARTESIAN PRODUCT OF GRAPHS

We proved the following Lemma 4.1 in [11].

Lemma 4.1

Let $G_1 \times G_2$ be the Cartesian product of two graphs G_1 and G_2 . If $\chi(G_1) > \chi(G_2)$, then $\operatorname{sd}_{\chi}(G_1 \times G_2) = \chi(G_1 \times G_2)$ if and only if $\operatorname{sd}_{\chi}(G_1) = \chi(G_1)$.

As an application of the Lemma 4.1, we are going to prove the following theorems.

Theorem 4.1: Let $B_{m,n}$ be the stacked book graph, then $sd_{\chi}(B_{m,n}) = \begin{cases} 1 & \text{if } n = 3 \\ 2 & \text{if } n \neq 3 \end{cases}$

Proof

For all m, $\chi(S_{m+1}) = 1$ and for all n, $\chi(P_n) = 2$.

And for all m, $sd_{\chi}(S_{m+1}) = 1$ and for n = 3, $sd_{\chi}(P_n) = 1$.

By the definition of stacked book graph, $B_{m,n} = S_{m+1} \times P_n$ where S_m is a star graph and P_n is the Path graph on n nodes, it is clear that if n = 3, then $n_{\Delta}(B_{m,n}) = 1$ and if $n \neq 3$, then $n_{\Delta}(B_{m,n}) > 1$.

If n = 3, then $n_{\Delta}(B_{m,n}) = 1$, that implies by the theorem 3.2(c), $sd_{\chi}(B_{m,n}) = 1$.

If $n \neq 3$, then $n_{\Delta}(B_{m,n}) > 1$. But the chromatic number is 2 and each color class have at least one vertex that has maximum degree Δ . So, both the color classes are strong dominating sets of $B_{m,n}$. There fore $sd_{\gamma}(B_{m,n}) = 2$

Theorem 4.2: Let $G_{m,n}$ be a Grid graph.

Then
$$sd_{\chi}(G_{m,n}) = \begin{cases} 1 & \text{if } (n = 3 \text{ or } 1) \text{ and } (m = 1 \text{ or } 3) \\ 2 & \text{otherwise} \end{cases}$$

Proof

Let G be a Grid graph $G_{m,n}$. By definition of Grid graph, $G_{m,n}$ is Cartesian product $P_m \times P_n$ of path graphs on m and n vertices.

Vol. No.4, Issue 08, August 2015

IJARSE SSN 2319 - 8354

If either n=3 or 1 and m=1 or 3, then $n_{\Delta}(G_{m,n})=1$, that implies by the theorem 3.2(c), $sd_{\chi}(B_{m,n})=1$. Otherwise, $n_{\Delta}(B_{m,n})>1$. But the chromatic number is 2 and each color class have at least one vertex that has maximum degree Δ . So, both the color classes are strong dominating sets of $B_{m,n}$. There fore $sd_{\chi}(B_{m,n})=2$

Theorem 4.3: Let G be a n -ladder graph. Then $sd_{\gamma}(G) = 2$

Proof

Since n -ladder graph is $2 \times n$ grid graph $G_{2,n}$. By Theorem 4.1, $sd_{\gamma}(G) = 2$

Theorem 4.4: Let G be a Helm graph
$$H_n$$
. Then $sd_{\chi}(G) = \begin{cases} 2 & \text{if } n = 4 \\ 1 & \text{otherwise} \end{cases}$

Proof

For n = 4, H_n is the graph obtained from a 4 – Wheel graph by adjoining a pendant edge at each node of the cycle. And it is clear that, each vertex in the wheel has degree 4. Hence

$$sd_{\gamma}(G) = 2.$$

For $n \neq 4$, H_n is the graph obtained from a n – Wheel graph by adjoining a pendant edge at each node of the cycle. And it is clear that, centre vertex in the wheel has degree n and the outer vertices of the cycle of the wheel have degree 4. Hence $sd_n(G) = 1$

Theorem 4.5: Let
$$Y_n$$
 be the Prism graph, then $sd_\chi(Y_n) = \begin{cases} 3, & \text{if } n \equiv 3 \pmod{6} \\ 2, & \text{otherwise} \end{cases}$

Proof

For $n \ge 3$, prism Y_n is the Cartesian product $C_n \times k_2$ where C_n is a cycle on n-vertices and K_2 is the complete graph on 2-vertices.

For all
$$n$$
, $\chi(Y_n) = \chi(C_n)$ and for all n , $sd_{\chi}(Y_n) = sd_{\chi}(C_n)$.

Thus
$$sd_{\chi}(Y_n) = \begin{cases} 3, & \text{if } n \equiv 3 \pmod{6} \\ 2, & \text{otherwise} \end{cases}$$

REFERENCES

- [1] Douglas B. West, Introduction to Graph Theory, 2nd Edition, Prentice Hall: Inc, Mass, 2001.
- [2] Dieter Rautenbach, *Bounds on the strong domination number*, Discrete Mathematics, 215, 2000, 201-212.
- [3] E. Sampathkumar and L. Pushpa Latha, *Strong, Weak Domination and Domination Balance in a Graph*, Discrete Math., 161, 1996, 235-242.
- [4] Harary, E., *Graph Theory* (Addison Wesley, Reading, Mass, 1972).
- [5] S. Arumugam, I. Sahul Hamid and A. Muthukamatchi, Independent Domination and Graph Colorings, In: Proceedings of International Conference on Discrete Mathematics. Lecture Note series in Mathematics, Ramanujan Mathematical Society, India, 2008, 224-232.
- [6] T.Ramachandran, A.Naseer Ahmed, *Strong and Weak Dominating χ- Color Number of K-Partite Graph*, International Journal of Advanced Technology in Engineering and Science, ISSN (online): 2348 7550.
- [7] Fu-Tao Hu, You Lu, Jun-Ming Xu, *The total bondage number of grid graphs*. arXiv:1109.3929v1 [math.CO], (2011).

www.ijarse.com

- [8] A. Solairaju and P. Murugananthan, Even vertex graceful of Path, Circuit, Star, Wheel, some Extension-friendship Graphs and Helm Graph, International Journal of Computer Applications(0975-8887),vol.10-No.6,Nov.2010
- [9] M.Weisstein, Eric W., Fan Graph, Ladder Graph from Math World, Wikipedia, the free Encyclopedia.
- [10] M.Weisstein, Eric W., Book Graph, Staked Book Graph from Math World, Wikipedia, the free Encyclopedia.
- [11] T.Ramachandran and A.Naseer Ahmed, *Strong dominating* χ *color number of some graph*, Math. Sci. Int. Res. Journal, Vol 2, Iss 2, 2013.