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ABSTRACT  

The compression behavior of some nanomaterials at high pressure is critically analyzed by using power series 

approach of equation of state. The present equation of state (EOS) is developed with the help of simple concept 

of power series. Many EOSs  for different solids are derived on the basis of different theories viz. Rydberg 

potential, finite stain etc. but it has been observed that EOSs can be obtained by power series expansion.  It is 

shown that the power series method is capable enough to establish an excellent EOS for nanomaterial. The 

calculated results obtained by using present EOS is further compared with different frequently used EOSs and 

experimental results. Present EOS gives good agreement between theory and available experimental data which 

supports the validity of the simple power series model proposed for nanomaterials. 
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I. INTRODUCTION 

 

In nature, a large number of systems operate under law of physics in nanoscale. Nature is a master in nano 

engineering. Nanoscale phenomena like Chemical reaction, catalysis action, surface properties, nano particle 

properties, condensation of water in raindrops or in ice, nanoparticle in dust, volcano, and factory smoke are 

witnessed all around the physical world. In biological processes like functioning of life, metabolic activity in 

body and cell, photosynthesis, functioning of chlorophyll, fertilization of ovum and various initial stages of 

development of zygote are the example of nanoengineering in nature.  

 It is possible to control fundamental properties like colour, electric conductivity, melting point, strength, 

modulus of rigidity, hardness, thermal expansion by applying nanotechnology in manufacturing of these 

materials.  Nanoscience plays a key role in turning these concepts in reality. Researchers are investigating the 

applications of nanomaterials meanwhile the properties of these materials are also being studied by the different 

workers [1-4].  

Nanoscience covers various branches of science viz. physics, chemistry, material science, and biology. 

Nanoscience deals with fabrication, characterizations and properties of matter in nano scale i.e. 1-100 nm. This 

scale is basically of the order of dimension of molecule; therefore it covers a wide range of physical and 

biological matter. The laws of Physics operate in a different ways due to complex type of interface of quantum 

mechanics, constraints in design a material. Nanomaterials have a large surface to volume ratio which is a 

significant property. But the different behaviors of nanometerial on nanoscale also open the door for new 
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research opportunity in the manufacturing and characterization of structural and physical properties of these 

materials. Now study of natural phenomena occurring in any material can be understood and explained by point 

of view of nanoscience. Nonomaterials like ceramic, composite, polymers always require to control over the 

structure of material on nanoscale so that the desired physical properties can be obtained[4,5].  

Nanomaterials often require different production techniques. The main approaches for the construction are top 

to down and bottom to up approach. A large number of materials are now prepared and considered as 

nanomaterial but some materials are still in laboratory stage and only some of them are commercially available 

for different applications [6, 7]. The one dimension nanomaterials are thin films and other surfaces like silicon 

integrated circuited used in electronics industry. In this type of nanomaterial, the thickness of film approaches to 

atomic dimension. On the other hand, in two dimensional nanomaterials such as tubes and wires which have two 

nanoscale dimensions. Carbon nano tubes (CNT) are the best example of two dimensional nanomaterials. CNT 

are basically rolled arrangement of C atoms. CNT may be single walled or multi walled. Single walled CNT 

consist of just one tube. However, multiwalled CNT has several concentric tubes which have dimension of 

nanometer but its length may be in order of micrometer to centimeters [8-11]. Due to strong bonding among the 

specially arranged carbon atoms, they have noble physical and chemical properties. Mechanically these 

materials are very strong like diamond and have high melting point. The elastic constants of nanomaterials are 

different from other solids. The bulk modulus of CNT is in order of TPa which results small compression. In the 

present paper, compression of CNT is also studied on the basis of EOS. Sometimes single walled carbon 

nanotube has irregular horn like shape which is called nanohorn. Another type of structure of nanomaterial is 

dendrimer which is a highly branched tree like polymer molecule. Many biological materials like cells, cancer 

tumors have dendrimer shape. Researchers are working in the area of formation of such drugs which can affect 

better in these denrimer shaped surfaces.  surfaces.   Now the measurements techniques like STM are capable 

of analyzing and characterizing accurate arrangement of molecules. However, in nanoscales the physical 

properties are strongly influenced by quantum mechanical effects. Specially electronic and optical properties of 

these materials can be explained with the help of quantum mechanics. Sometimes semiconducting nano particles 

are called quantum dots [12-13]. Quantum dots play a significant role in optical and spectral behavior of these 

materials. The specific wavelength of optoelectronic device can be controlled by size and arrangement of the  

particle. 

The study of elastic constants and phase transition of nanomaterials at high pressure and high temperature is one 

of the major areas of interest and it attracts the attention of many theoretical and experimental workers of this 

field. The study will be useful from the fabrication and application point of view.  Many experimental and 

theoretical studies are going on in this field [14-23]. Some completely analytical equations of state are available 

but still there is lacking of theoretical work. The purpose of this study is to advance the new approaches for 

equation of state for nanomaterials. In the present study the compression and bulk modulus behavior of some 

nanomaterials are analysed with the help of a new mathematical approach of equation of state. A number of 

nano materials viz. MgO, CdSe, CNT bundle, Rb3C60,  Fe (Hexagonal), α Fe filled MWCNT, Fe3C filled 

MWCNT and 3C-SiC(30nm)  are selected for this purpose. 
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II. METHOD OF ANALYSIS 

 

The equation of state is a fundamental  relation to analyze the elastic and physical properties of different class of 

solids and it plays a key role in basic and applied condensed matter Physics related research. A very little work 

has been done in the field of nanomaterials[24-26], however a lot of work has been done in other class of 

solids[27-30]. Most of the equations of state are not suitable to explain the properties of nanomaterials at high 

pressure due to their abnormal behavior in this particle size range.  However, some widely used EOSs in recent 

literature are used for nanomaterial. Pasafar and Mason [31] have considered a relation for compressed solids on 

a physical basis by finding that the repulsive branch of binding energy curve can be fitted by a quadratic 

expression in density, given as  
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Where P is pressure, V/V0 is volume compression. Where V0 is volume at zero pressure and A0, A1 and A2 are 

constants for a given temperature. However, on the basis of different theories Hama and Suito [32], Shanker and 

Kushwaha [33] have pointed out some drawbacks of this equation. Shanker and Kushwaha[33] expended the 

power series of PV
2
, and similarly Singh[34-35] expended the  power series PV in powers of (1-V/V0).  Further 

Kholiya [35] expand the series as 
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Sharma and Kumar [25] modified Shanker’s formulation which was originally derived from volume temperature 

relation and given as  
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Similarly, other possible relations are  
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In all the above equations the values of constants A0, A1 and A2 are obtained by applying boundary conditions i. 

e. at  P=0; V=V0 ; B= B0 ; B’= B’0 where B is bulk modulus and B’ is pressure derivative of bulk modulus and 

subscript 0 represents value at zero pressure. Applying boundary conditions eq. (4) becomes 
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This is basically Tait’s EOS. Expanding the exponential term and neglecting the higher order term eq. (6) 

becomes 
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If boundary conditions are applied in eq. (3), the same eq. is obtained. Similarly applying boundary condition on 

eq. 5, Murnaghan EOS is obtained and reads as 
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Power series represented by eq. (1-5) are fully analytical and no physical and mathematical justifications are 

available for proposing these series, however, eq.(1) to (5) provide different EOS which are available in 

literature [35] and frequently used . On the basis of interatomic potential energy Vinet considered the following 

expression for pressure and known as Vinet universal EOS and widely used in recent literature [27]. 

 






















































































3

1

0

'

0
3

2

0

3

1

0

0 1
2

13
exp13

V

VB

V

V

V

V
BP              (9) 

 In the present paper, the author proposes a physical and mathematical explanation behind the pressure volume 

relation. Starting from the original power series concept, it is a well known fact that power series can 

approximate any function especially when the parameters are small. The approximation techniques are 

frequently used in Physics and many a times, the series give unexpected useful result. The power series is 

generally expressed as 

             (10) 

 

Where f(x) is any function, x is variable, An are constants and c is the center around which the series expands. It 

is pointed out that series is centered at c, and in case of pressure, it can be assumed that pressure is function of 

density ρ and series is centered around the density ratio ρ/ ρ0=1 i.e.  at zero pressure. Power series give good 

approximation if the variable is small i.e. ρ/ ρ0 centered at 1. Therefore the expansion is centered on zero 

pressure. On the basis of this concept, the correct power series can be proposed as   
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The series is extended up to quadratic term only because higher order terms involve higher order derivatives of 

bulk modulus which are presently not available in the literature. However by including the higher order term 

results may improve. Volume and pressure are related as  
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Applying boundary condition and using the definition of bulk modulus i.e. 
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By using eq. (12), bulk modulus is given as 
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It should be mentioned here that the above equations of states are mathematically and thermodynamically 

consistent. However, some equations used for nanomaterials viz. Suzuki equation of state [36, 37], Kumar and 

Kumar formulation [35] are not mathematically and thermodynamically consistent. Further eq. (13) can be 

extended for the effect of temperature on nanomaterials by introducing concept of thermal pressure. 

The thermal pressure PTh is expressed as    
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where α0 is thermal expansion coefficient at zero pressure. Using Hiderbrand approximation [38]   eq. (11) 

becomes 
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If pressure is fixed and the temperature changes, then the eq. (13) becomes    
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This equation can be used for the study of temperature in nanomaterials. 

 

III. RESULTS AND DISCUSSION 
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bulk modulus of nanomaterials are obtained by using presently proposed eq. (13) and compared with some 

frequently used EOSs viz. Shanker modified equation by Sharma and Kumar [eq. (7)], Murnaghan EOS [eq. (8)] 

and Vinet EOS [eq.( 9)]. In the present study almost all important nanomaterials have been selected ( MgO, 
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CdSe, CNT bundle, Rb3C60,  Fe (Hexagonal), α Fe filled MWCNT, Fe3C filled MWCNT and 3C-SiC(30nm) ). 

Since nanomaterials are used for device fabrication so it is very important to know about compression and bulk 

modulus of these materials for their utility at high pressure and high temperature range. The input parameters for 

calculations are given in table 1 with their references in square brackets.  The compression behaviors obtained 

by using different equations are graphically represented in figures 1 to 8 and their experimental data are given in 

square brackets [39-43]. In all cases of selected nanomaterials, it is found that the calculated results show good 

agreement with available experimental data. Further, the results obtained by eq.13 are also compared with some 

frequently used EOS like Vinet [27] and Sharma and Kumar [25]. It is noticed that results are very close to 

Vinet universal EOS. In some cases of nanomaterials like 20 nm Ni, GaN, Si results are better than Vinet’s 

EOS. The bulk modulus and pressure derivative of bulk modulus of nanomaterials can be calculated by using 

eq.14 and 15, but experimental data are not available, therefore, results are not given in the present paper. Thus, 

it is found that the present equation is capable to predict compression as well as bulk modulus behavior of 

nanomaterials.  The pressure range selected is such that the experimental data are available for comparison, 

although it can be calculate in all possible range.    

 Thus, good results are obtained for the compression behavior of nanomaterial solids by using eq. (13). It can be 

emphasized that simple concept of power series introduced in EOS seems to be applicable for the study of 

nanomaterials under high pressure and high temperature.  

 

IV. CONCLUSION 

 

An equation of state is proposed to analyze compression behavior of some important nanomaterials like MgO, 

CdSe, CNT bundles, Rb3C60, ε Fe, αFe filled MWCNT, Fe3C filled MWCNT and 3C-SiC(30 nm) under high 

pressure and high temperature. The input parameters used in this work have been shown in Table 1. It has been 

shown that the compression at high pressure can be successfully explained using presently proposed EOS.  In 

present study, this equation is further extended for a high temperature and high pressure range by introducing 

the concept of thermal pressure. After the study it is found that the results obtained by new equations of state 

show good agreement between calculated and available experimental data. The overall study demonstrates the 

validity of proposed equation.   

Table 1: Input Parameters with their Corresponding References. The Square Brackets Show 

the Reference Sources. 

Solids  B0 (GPa) 
0B  

Reference 

MgO  179 1.5 [11] 

CdSe  74 4 [14] 

CNT bundle  37 11 [15] 

Rb3C60  17.35 3.9 [16] 

 Fe (Hexagonal)  179 3.6 [17] 

α Fe filled MWCNT  167 4 [18] 

Fe3C filled MWCNT  135 4.05 [19] 

3C-SiC(30nm)    245 2.9 [20] 
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