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ABSTRACT 

Over the past two decades, advancements in microelectronic technology have resulted in the availability of fast, 

inexpensive processors, and advancements in communication technology have resulted in the availability of cost 

effective and highly efficient computer method for dynamically scheduling applications running on 

heterogeneous platforms in order to maximize overall throughput. The key to our approach is accurately 

estimating when an application would finish execution on a given device based on historical runtime 

information, allowing us to networks. An essential component of effective use of distributed systems is proper 

task placement or scheduling. To produce high-quality schedules, scheduling algorithms require underlying 

support mechanisms that provide information describing the distributed system. We present a make scheduling 

decisions that are both globally and locally efficient. We evaluate our approach with a set of applications 

running on a system with a multi-core CPU and a discrete GPU.  

 

Keywords: Distributed Systems; Cluster; Grid Computing; Grid Scheduling; Workload Modeling; 

Performance Evaluation; Simulation; Load Balancing; Task Synchronization; Parallel Processing. 

 

I. INTRODUCTION 

 

A distributed system is a collection of cooperating computers. In the past two decades, the use of distributed 

systems has increased dramatically. Such systems have several advantages over uni-processors, such as 

improved performance and increased fault tolerance. Nowadays, it is feasible to build computer systems with 

enormous processing capacities by interconnecting many small computers. An example of such a high-

performance system is the Distributed ASCI (Advanced School for Computing and Imaging) Supercomputer 

[17], a set of four clusters of workstations at Dutch universities interconnected by Asynchronous Transfer Mode 

(ATM) links. Many compute-intensive applications, such as those found in the areas of weather forecasting, 

VLSI design, and other numerical computations, can benefit from the capacity of such super clusters. The 

features of distributed system are as follows: 

 Data is stored in several sites (nodes), geographically or administratively across multiple systems 

 Each site is running as an independent system 

 What do we get?  

 Increased availability and reliability 

 Increased parallelism 

Complications of distributed system are: 

 Catalogue management: distributed data independence and distributed transaction atomicity 
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 Query processing and optimization: replication and fragmentation 

 Increased update costs, concurrency control: locking, deadlock, commit protocol, recovery. 

Distributed computing consists of applications running on a platform that has more than one computational unit 

with different architectures, such as a multi-core CPU and a many-core GPU. Generally these kernels perform 

better on the GPU as they are optimized for a GPU’s highly parallel architecture and GPUs typically provide 

higher peak throughput. Therefore, applications preferentially schedule kernels on GPUs, leading to device 

contention and limiting overall throughput. In some cases, a better scheduling decision runs some kernels on the 

CPU, and even though they take longer than they would if run on the GPU, they still finish faster than if they 

were to wait for the GPU to be free. We propose that by capturing and using historical runtime information, a 

scheduling algorithm is able to make a decision about the tradeoff of forcing an application to run its kernel on a 

slower device against waiting for the faster device to become available. 

Kernels perform better on the GPU as they are optimized for a GPU’s highly parallel architecture and GPUs 

typically provide higher peak throughput. A better scheduling decision runs some kernels on the CPU as they 

can finish faster than if they were to wait for the GPU to be free. Utilizing all available processors for 

computational work, the total throughput of the system is increased over a static schedule that runs each kernel 

on the fastest device. 

Dynamic approach used to heterogeneous scheduling is to predict how long an application will run when it is 

assigned. Capturing and using historical runtime information, a scheduling algorithm is able to make a decision 

about to run its kernel on a slower device against waiting for the faster device to become available. Implement 

the scheduler on a set of few applications and demonstrate the improvement of the algorithm (Dynamic 

Heterogeneous Scheduling Decisions Using Historical Runtime Data) over other scheduling decisions for a 

system that has a CPU and a GPU. We propose that by capturing and using historical runtime information, a 

scheduling algorithm is able to make a decision about the tradeoff of forcing an application to run its kernel on a 

slower device against waiting for the faster device to become available [11]. As a database of application 

runtimes gets built, scheduling decisions become better. In this work, we show that the database can be as 

simple as keeping an average runtime for each application, along with information about the input data size. 

From this information we also show that a dynamic scheduler can improve overall throughput considerably over 

a statically scheduled solution.  

 

1.1 Details of Work 

 We present an algorithm that analyzes a queue of applications and assigns them to devices of a 

heterogeneous system as overall computational throughput is increased over a statically scheduled solution.  

 We demonstrate that even if all applications natively run faster when assigned to one device, there are 

situations where assigning an application to a slower device allows that application to complete before it 

would have if it had waited for the faster device. 

 Furthermore, this solution preserves fairness for an individual’s placement in the queue. 

 A better scheduling decision runs some kernels on the CPU as they can finish faster than if they were to 

wait for the GPU to be free. 

 We describe a history database structure that collects and averages runtime data for each application. 

 We demonstrate how runtime predictions for applications with unique data inputs can be made from data 

input size differences. 
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 We implement the scheduler on a set of five Open CL applications and demonstrate the improvement of the 

algorithm over other scheduling decisions for a system that has a CPU and a GPU.  

 We also show that the scheduler produces an improved schedule and a high utilization for both devices 

even when all applications individually run faster when assigned to the GPU. 

 

II. PROBLEM DEFINATION 

 

There are two types of distributed systems: 

 Homogeneous system: identical DBMS, aware of each other, cooperate 

 Heterogeneous system: different schemas/DBMS 

 Multidatabase system: uniform logical view of the data -- common schema 

 Difficult, yet common: system is typically gradually developed 

 

Figure 1 Architecture of Distributed System 

Scheduling computational work for heterogeneous computer systems is substantially different than scheduling 

for systems with homogenous processing cores. The major differences of heterogeneous system are: 

 An application can have a drastically different running time when assigned to different device: As GPU 

kernels running one hundred times faster than comparable CPU kernels and because of these runtime 

differences, assigning an application to one of two devices necessitates knowing which device will allow 

the application to run faster. 

 GPU processors do not have the capability to time-slice workloads: Kernels that are launched on a GPU run 

sequentially, one at a time. The latest GPUs have limited ability for multiple kernels to run in parallel, but 

there must be careful coordination to ensure that all kernels and their data fit onto the card, and that they do 

not have any dependencies. Without the ability to time-slice, a kernel launched behind other kernels must 

wait until all other kernels finish completely before starting its own work. 

We propose that scheduler determines the best device at a given time for each kernel by analyzing predicted 

runtimes of the applications. This scheduler has historical runtime information about the other applications in 

the queue, and knows which kernels, if any, are currently running. Given a set of queued applications that are 

not queued for a specific device, the scheduling problem becomes one of judiciously assigning the applications 

to devices to maximize computational throughput while remaining fair to the queue order. Many factors can go 

into this scheduling decision for a given application, including the number of applications ahead in the queue, 

the application or applications that are currently assigned to the devices on the system and their runtimes, how 

much data must be transferred between device memory systems, and the relative speed of the application when 

assigned to each device in the system. 
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Our implementation supports running the same kernel across both CPUs and GPUs. Kernels can be compiled for 

available devices prior to or at runtime.  Kernels can be run on more than one device in a system. Our scheme 

allows for implementations that have separate versions of a kernel for each available device and the runtime 

similarly chooses the correct binary once a device decision has been made. We address occurring problems as 

difference between homogenous and heterogeneous by using a historical database that contains runtimes for 

applications on each device and determining a schedule that runs applications on the device in which they will 

finish first. 

Problem can be defined as: 

o Assigning an application to one of two devices necessitates knowing which device will allow the 

application to run faster. 

o Assign applications to devices to maximize computational throughput while remaining fair to the queue 

order. 

o Running the same kernel across both CPUs and GPUs.  

o Allow for implementations that have separate versions of a kernel for each available device. 

o Historical database that contains runtimes for applications on each device and determining a schedule that 

runs applications on the device in which they will finish first. 

 

III. CREATING HISTORICAL DATABASE 

 

Our method for dynamic scheduling relies on historical data about application runtimes. We propose a method 

for collecting data such that it is accessible quickly and provides enough information about a given application 

to be useful for making predictions about how long an application will take when assigned to a device. Table 1 

shows the lightweight and extensible data structure we use to store the data. The data structure presented in 

Table 1 is not exhaustive, but we believe that in this form it is both robust enough to provide worthwhile data 

and lightweight enough to be useful for fast access. Given database provide CPU burst time and GPU burst time 

of each application. It will help to decide which application can be executed on CPU or GPU or alternatively. 

Table 1 Historical Database 

Job no Value  Application CPU Burst time GPU  Burst time 

1 Float MatTrp 8.00 15.00 

2 Float MatMul 22.00 13.00 

3 Float F_F_T 21.00 13.00 

4 Float EIGEN 21.00 14.00 

5 Float  BinSrc 7.00 17.00 

 

IV. LITERATURE SURVEY 

 

The scheduling decisions are based on the dynamic parameters that may change during run time. The goal of 

scheduling is to utilize all the processors with minimum execution time by proper allocation of tasks to the 

processors. Task scheduling achieves high performance in the heterogeneous systems. A Parallel application can 

be represented by a Directed Acyclic Graph (DAG), which represents the dependency among tasks, based on 
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their execution time and communication time. We investigate different aspects in scheduling and issues in 

various levels of the heterogeneous systems. 

The idea of using historical data for heterogeneous scheduling decisions has been discussed in other work, 

although very few have targeted GPU computing. Several researchers have proposed using performance models 

to predict runtime (e.g., Meng and Skadron [6] and Hong et al. [4]), but performance models have high overhead 

and are generally not portable between hardware generations. We believe that using historical runtime data 

provides a better prediction for kernel runtimes. Ali et al. show that using a historical prediction database is 

worthwhile for grid computing [13], and Siegel et al. [16] discuss automated heterogeneous scheduling where 

one stage is to profile tasks and to perform analytical benchmarking of individual tasks. This information is then 

used in a later stage to predict runtimes for applications based on current processor loads. Similarly, our 

approach profiles applications as they run, but also extrapolates runtimes for applications with different input 

sizes from an analytical assessment of the collected data. Topcuoglu et al. describe the “Heterogeneous Earliest- 

Finish-Time” (HEFT) algorithm [15], which, like our approach, attempts to minimize when individual 

applications finish. Maheswaran et al. [14] describe a set of heuristics that inform a dynamic heterogeneous 

scheduler. Their Min-min heuristic calculates  which device will provide the earliest expected completion time 

across a set of tasks on a system. The task in the queue that will complete first is scheduled next. Both 

Topcuoglu et al. and Maheswaran et al. were written prior to the advent of GPU computing, and they simulated 

their algorithms. Our approach differs from both Topcuoglu et al. and Maheswaran et al. by considering 

fairness, ensuring that applications do not get pre-empted by other applications, and we also tested our scheduler 

on CPU/GPU heterogeneous hardware. 

Harmony [12] also uses performance estimates in order to schedule applications across a heterogeneous system. 

They propose an online monitoring of kernels and describe a dependence-driven scheduling that analyzes how  

applications share data and decides on processor allocation based on which applications can run without 

blocking. Our approach considers applications to be independent, and schedules applications from multiple 

applications concurrently. Jim´enez et al. [7] demonstrate two predictive algorithms that use performance 

history to schedule a queue of applications between a CPU and a GPU: history-gpu, that schedules work on the 

first available device that can run an application, and estimate-hist, that estimates the waiting time for each 

device and schedules an application to the device that will be free the soonest.  

Luk et al. [8] use a historical database for Qilin that holds runtime data for applications it has seen before, 

although Qilin focuses on breaking a single applicationacross multiple devices instead of running multiple 

applications across multiple devices as we do. Augonnet et al. [9] use performance models to provide 

scheduling hints for their StarPU scheduler, and programmers who write applications for StarPU can provide a 

“cost model” for each application that enables the scheduler to predict relative runtimes. Our approach does not 

require programmers to modify their code. Becci etal. [2] use performance and data transfer overhead history to 

inform a dynamic heterogeneous scheduler for legacy kernels, focusing on postponing data transfer between 

devices until it is actually needed. Research Gaps  
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Table 2 

Tarun Beri, Sorav Bansal and Subodh Kumar[1]  present a runtime system for simple and efficient 

programming of CPU+GPU clusters. The programmer focuses on core logic, while the system undertakes 

task allocation, load  balancing, scheduling, data transfer 

 

V. RESEARCH METHODOLOGY 

 

We assume that applications are placed into a first-in-first-out ( FIFO) queue and each kernel can run on any of 

the available devices. For clarity we also assume that there are two devices available, a CPU and a GPU, 

although the algorithm could easily be extended to include an arbitrary number of devices.  We also assume that 

most applications will run faster when assigned to the GPU. 

 

5.1 Steps of the Algorithm 

In essence, the scheduler we describe implements a greedy algorithm that assigns applications to devices based 

on a comparison between the predicted times for the application to finish on all available devices. Even if an 

Author’s names  Year of 

publication  

Techniques 

used  

Description  

Delgado Peris;  

Hernandez,J.M.; 

Huedo, E.  

2014  Pull based Late 

binding 

overlays  

Job agents are submitted to resources 

with the duty of retrieving real workload 

from a central queue at runtime[3]  

Jianlong zong; 

Bingshang He 

2014  Kernelet:  High-

Throughput 

GPU Kernel 

Executions with 

Dynamic 

Slicing and 

Scheduling  

Many kernels are submitted to GPUs 

from different users, and throughput is 

an important metric for performance and 

total ownership cost  

Fengguang 

Song; Jack 

Dongarra  

2012  Concurrent 

Programming -

Parallel 

programming  

A Scalable Framework for 

Heterogeneous GPU-Based Clusters: 

Devised  a distributed dynamic 

scheduling runtime system to schedule 

tasks, and transfer data between hybrid 

CPU-GPU compute nodes transparently.  

Tarun Beri, 

Sorav Bansal 

and Subodh 

Kumar  

2011  Shared global 

address space, 

made efficient 

by transaction 

style bulk-

synchronous 

semantics.  

A runtime system for simple and 

efficient programming of CPU+GPU 

clusters. The programmer focuses on 

core logic, while the system undertakes 

task allocation, load balancing, 

scheduling, data transfer, etc  
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application would run faster assigned to a particular device, if there are enough applications ahead of it in the 

queue for that device, it may finish faster assigned to the slower device because that device is free. Our 

scheduling algorithm is laid out as follows. There are two devices available most applications will run faster 

when assigned to the GPU. We create a sub-queue for each device, and place applications in those sub-queues 

from the main queue according to the following rules: 

 If a sub queue has applications and the device for that sub-queue becomes free, assign the next application 

in the sub-queue on that device. 

 If one device is busy but the other device is free and the next application  in the main queue has not been 

assigned to that device before, assign it  to that device in order to build the database. 

 If only one device is free and the next application in the main queue runs slower assigned to that device, 

estimate how long the other device will be busy using the history database and include other application 

also scheduled to be assigned to that device in its sub-queue. 

 If the next application in the main queue will finish faster by being assigned to the slower device, assign it 

to that device. If not, put it into the sub-queue for the busy device. 

 Continue through the main queue until both devices are busy running applications. 

As an application finishes, update the historical database with the runtime information, calculating the average 

runtime and the standard deviation, and repeat the algorithm from the beginning. The scheduling algorithm 

described above continues to improve as more data is entered into the historical database, and each application 

is penalized at most once when it is assigned to a slower device in order to build the database. Because 

application runtimes are averaged into the previous runtime for a device, outlying points that could be caused by 

factors unknown to the scheduler (e.g., GPU contention due to video processing associated with the display) are 

smoothed out over time. Because our scheduler assigns applications to devices that are not necessary optimal for 

each individual application, we must discuss scheduling fairness. We define a schedule to be fair if each 

application finishes no later than it would have finished if it were allowed to execute its kernel on its preferred 

device. In other words, a fair schedule does not penalize an application even if the application is assigned to its 

non-preferred device. Accordingly, no starvation occurs, and applications are scheduled for a device in queue 

order. The algorithm presented earlier generates fair schedules except in two cases: if the predicted runtimes are 

significantly incorrect or when an application is first encountered and is assigned to a slower device. 

 

5.2 Application Runtime Prediction 

If an application has been assigned to a device at least once with a given set of inputs and the same application 

is subsequently run with the same input size, the scheduler uses the average application time as a runtime 

prediction for that device. The scheduler makes the prediction based on a linear least-squares calculation, using 

the input sizes as one parameter, and the previous runtimes as another. Table shows the actual runtimes versus 

the predicted runtimes. 
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Table 3 CPU and GPU utilization of 5 applications 

 
 

IV. WORKLOAD AND TEST ENVIRONMENT 

 

In order to test our algorithm, we used five applications with one kernel, and ran the set of applications 

sequentially. The applications we used in our experiments represent a number of computational algorithms that 

are commonly used in scientific computing. We will get the applications and the absolute and relative runtimes 

for the data sets that we tested with. As expected, most applications had kernel that ran faster on the GPU, and 

therefore the entire applications ran faster on the GPU. In order to demonstrate the scheduler when some 

application were faster assigned to the CPU, we set the data size small enough for these applications. 

Initially, with limited or no historical information, applications are assigned to the GPU if it is free and to the 

CPU otherwise. Compared to a GPU-only scheduling solution, the scheduler performs worse on first few runs, 

but it quickly improves its performance. The scheduler always performs better than a CPU-only solution for this 

set of applications.  

 

VII. RESULTS  

 

Results show the time needed to run the set of 5 applications for four different scheduling algorithms. In the 

CPU only and GPU only cases, all applications were assigned to each respective device. For the “CPU/GPU 

Static using history” case, each application is assigned to its preferred device. The last column shows the results 

using the dynamic scheduler we have described. The utilization of the CPU is only 37%, and most of the 

applications were assigned to the GPU. The results from our algorithm, demonstrating 67% GPU utilization.. 

We have put our data set for 5 applications into a C program and used our MIXED Runtime Scheduling 

Technique. Results obtained were : 

Job No. Application  CPU-Burst Time GPU-Burst Time 

1,  MatTrp    8.00   15.00 

2.  MatMul    22.00   13.00 

3.  F_F_T    21.00   13.00   

4.  EIGEN    21.00   14.00 

5.  BinSrc    7.00   17.00 

The jobs were executed based on the minimum time it takes on a particular CPU/GPU.  

Total CPU elapsed time was = 15.00 (Here jobs 1 and 5 were run on CPU and others on GPU) 
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Total GPU elapsed time was = 40.00 

After mixing up the jobs, they were executed based on 1
st
 priority on CPU/GPU where it takes less time and 

within it, in case a particular device is free the job ran on that device though it runs slow on it. Results were: 

Total CPU elapsed time was = 28.00 (Job 1&5 of CPU-Burst Time and Job 3 of GPU-Burst Time) 

Total GPU elapsed time was = 27.00 (Job 2&4 of GPU-Burst Time) 

In 1
st
 case CPU Utilization was: 37% (=15 x 100 / 40) In 1

st
 case GPU Utilization was : 63% 

In 1
st
 case jobs finished in 40 time units. 

In 2
nd

 case CPU Utilization was : 100% (=28x100/28) In 2
nd

 case GPU Utilization was : 96% (=27x100/ 28) 

In 2
nd

 case jobs finished in 28 time units.   

A net saving of (40-28)*100/40=30% time units. 

 

VIII. CONCLUSION 

 

The dynamic scheduling finishes all applications 30% faster than the statically scheduled GPU-only solution. 

In this paper, we described and demonstrated a dynamic scheduling algorithm that schedules application based 

on a historical database of runtime values. We showed that by storing and using the historical information, a 

scheduler can determine how to assign applications to processors. The resulting schedule fairly schedules 

applications according to their order in the queue, and if the runtime prediction is relatively accurate, 

applications will finish running prior to when they would have if they had all been statically scheduled onto the 

GPU, or if they had been scheduled to run on the device on which they run fastest.  

 

IX. FUTURE WORK 

 

We will take a look at how a historical scheduler could be used in a cluster of CPU/GPU machines, and for 

other heterogeneous machines including Cell/B.E. or embedded system. Developing such an algorithm is still an 

open problem. Graphic processors (GPUs) will be introduced with many light-weight data-parallel cores, will 

provide substantial parallel computational [1] power to accelerate general purpose applications. To best utilize 

the GPU's parallel computing resources, it is crucial to understand how GPU architectures and programming 

models can be applied to different categories of traditionally CPU applications[3].We will also describe methods 

for looking at runtime trends to predict runtimes for applications with unique data size inputs. We will illustrate 

that using a historical prediction database is worthwhile for grid computing [4].Multi level dynamic scheduling 

and multi heuristic task allocation approaches to be implemented. We will investigate scheduling and runtime 

framework for a cluster of heterogeneous machines [5]. 
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