FAULT DETECTION IN ANALOG CIRCUIT USING NEURAL NETWORK

Mohd Ayub Khan ¹, Divya Rawat², Mahima Singh³, Meghna Acharya⁴, Monika Garg⁵

¹Department of Electronics and Communication Engineering, Anand Engineering College
^{2,3,4,5}Student, Department of Electronics and Communication Engineering,

Anand Engineering College

ABSTRACT

Many studies have been presented for the fault diagnosis of electronic analog circuits. The fault detection using neural network is more efficient than other technique because it has good robustness, strong learning ability and adaptability, neural network need to feed data For initializing the training of neural network. There are the inputs-outputs specified to the neural network. The data for the training and testing set is collected from the Simulator and the transient response of the circuit is used for this purpose. The training inputs corresponding to the fault free circuit include effects due to Component tolerance within specified limits and for faulty circuits, obtain by Injecting hard and soft faults to the circuit.

Keywords: Analog Circuits, Fault Detection, Neural Networks, Transient Response, Hard Faults, Soft Faults

I. INTRODUCTION

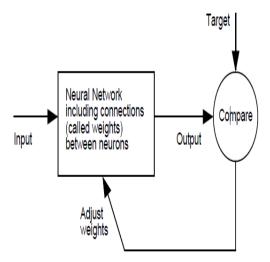
Although the technology has become so much advanced in designing of analog& mixed signal integrated circuits but still testing of analog circuit exists with a major problem due to the reason of the limited internal nodes & non-linearity of outputs which includes noise & changes in the specifications of the components value. The basic method used for testing is functional testing where the specifications of the circuit are tested, which is also not known with enough precision.

A fault is basically the change in value of an element with respect to its standard value that results failure of the circuit. The most common fault in electronics circuit is:

1) Soft fault 2) Hard fault

Soft fault is the fault introduce due to out of specification of element.

Hard fault is introduced due to either open or close circuit.

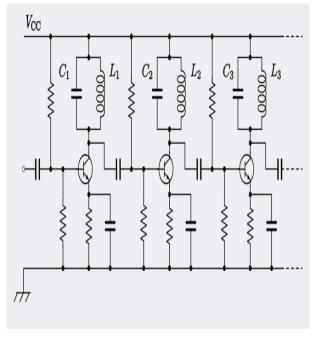

This paper introduces a new method for testing analog circuit using Artificial Neural Network.

An Artificial network consist of a pool of simple processing units which communicate by sending signals to each other over a large number of weighted connections.

There are two basic reasons why we are interested in building Artificial Neural Networks (ANNs)?

Technical Viewpoint : Some problems such as character recognition or the prediction of future states of a system require massively parallel and adaptive processing.

Biological Viewpoint: ANNs can be used to replicate & simulate components of the human (or animal) brain, thereby giving us insight into natural information processing.



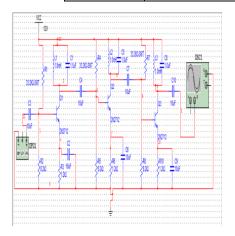
Figuer 1. Flow Diagram for Working of Neural Network

II. TRAINING SET DESIGN

The selection of the features for testing analog circuit is of great importance. We have used a multistage tuned amplifier in this project. Multi stage amplifier

include band pass filtering component with in amplifier circuitry. There are several tuning schemes in use staggered tuning where each amplifier stage is tuned to a slightly different frequency.

Figure 2. Tuned Amplifier Circuit


There are the input-outputs specified to the neural network. The data for training & testing set is collected from the PSpice simulator, multisim&matlab of the circuit is used for this purpose. The frequency responses of the circuits are used for this purpose. We can measure multiple faults as well.

III. MULTISIM SIMULATION

Reading taken from the fault free circuit through the multisim simulation software .the input voltage is fixed 5V and output is taken by varying the frequency

TABLE 1: Simulation Result for Fault Free Circuit

frequency (khz)	Input voltage	Output voltage	Gain	Gain in
1.1	5 v	8.39	1.678	2.2479
1.3	5 v	12.165	2.433	3.8614
1.5	5 v	15.623	3.1246	4.786
1.7	5 v	9.987	1.9974	3.0046
1.9	5 v	7.889	1.5778	1.9805
2.1	5 v	6.067	1.214	0.842

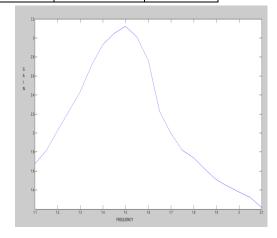


Figure 3.Simulation Circuit Figure 4.Frequency Response of Fault Free Circuit

The output of fault free circuit after simulation is compared with the output of faulty circuit for detection of fault in the circuit

Table 2.Simulation Output After Introducing Hard Fault

Frequency	Input voltage	Output voltage	Gain	Gain in db
1.1	5 v	10.278	2.0556	3.129
1.3	5 v	10.588	2.1176	3.258
1.5	5 v	13.47	2.6944	4.3039
1.7	5 v	9.815	1.963	2.929
1.9	5 v	9.798	1.9596	2.921
2.1	5 v	10.677	2.1354	3.2947

3.1 Neural Training Using Matlab Coding for Training

```
clc;
Clear all;
P=[1.1 1.3 1.5 1.7 1.9 2.1];
T= [1.678 2.433 3.1246 1.9974 1.5778 1.214];
Net = newff(P,T,5);
Y=sim(net,p);
P lot (P,T,P,Y,'o')net.trrainparam.epochs=50;
Net= train(net,P,T);
Y = sim(net,P);
Plot (P,T,P,Y,'o')
Z=Y-Y;
```

IV. EXPLANATION OF CODES

The MATLAB command newffgenerates a MLPN neural network, which is callednet.

Newff (input,output,number of layer)

After initializing the network, the network training is originated using train Command. The resulting MLP network is called net1. Epochs =determine when will the stop the number of iteration

4.1 Storing of Standard Data for Make Generalised System

4.1.1 Data Stored by Using Programming in Matlab

```
Let's take a example if we have standard output [1 2 3 4 5] clc; closeall; clear; p{=}[1\ 2\ 3\ 4\ 5]; \\ q{=}\ input('central\ frequency\ of\ circuit')} \\ for\ I{=}1{:}5 \\ if\ (p(I){-}q(I){<}(0.11{*}p(I)))\&(p(I){-}q(I){>}(-1{*}0.11{*}p(I))) \\ fprintf('noerror\n') \\ else \\ fprintf('error\n') \\ end \\ end
```

V. CONCLUSION

- Artificial Neural Networks are an imitation of the biological neural networks, but much simpler ones.
- The computing would have a lot to gain from neural networks. Their ability to learn by example makes
 them very flexible and powerful furthermore there is need to device an algorithm in order to perform a
 specific task.
- Neural networks also contribute to area of research such neurology and psychology. They are regularly used to model parts of living organizations and to investigate the internal mechanisms of the brain.
- Many factors affect the performance of ANNs, such as the transfer functions, size of training sample, network topology, weights adjusting algorithm, ...

REFERENCES

- [1]. Liu RW, "Testing and Diagnosis of Analog Circuit and Systems". New York: Van Nosland, 1991.
- [2]. Spence H, "Automatic Analog Fault Simulation "AUTOTESTCON Conference, PP 17-22, 1996.
- [3]. Chatterjee A, "Concurrent Error Detection and Fault Tolerance in Linear Analog Circuit using continuous Checksums", IEEE Trans.VLSI Systems Vol.1 no2 pp 138-150, 1993.
- [4]. Hamdi NB and Kaminska B, "Multiple Fault Testing in Analog Circuits Proc. 7th Int,1Cont.VLSI Design IEEE Computer Society Press,LosAlamitos,California, pp. 61-66, 1994.
- [5]. Mismar D., Soukosov E., Algadi B., "Transmission Zeros Based Fault Testing of Analog Circuits", Jordan Journal of Applied Science, vol. 2, pp. 62-70, 2003.
- [6]. R.Spina and S.Upadhyays, "Linear Circuit Fault Diagnosis using Neuro-Morphic Analyzers", IEEE Trans. Circuits Syst.II, vol 44, pp.188-196, Mar.1997.
- [7]. Y.MaidenB.W.Jervis, P. Fouillat and S.Lesage," Using Artificial Neural Networks or Lagrange Interpolation to characterize the fault in an Analog Circuit: an Experiment Study," IEEE Trans Instrum.Meas., vol. 48, pp 932-938, Oct.1999.
- [8]. M. Catelani and M.Gori, "On the application of several Neural Network to Fault Diagnosis of Electronic Analog Circuits," Measurement, vol.17, pp.73-80, 1996.
- [9]. Y. Deng and Y. He." On the Artificial Neural Networks to Fault Diagnosis in Analog Circuits with Tolerance," in 5th Int. Conf. on Signal Processing, WCCC- ICSP, 2000, pp. 1639-1642.
- [10]. Y.Maiden, B.W.Jervis P. Fouillat and S.Lesage," Diagnosis Of Multi-faults in Analogue circuit using Multilayer Perception," in Proc.IEE Circuits devices Syst., vol.144.pp149-154, 1997.
- [11]. M.Catelani and A. Fort," Fault Diagnosis of Electronic Analog Circuits using a radial basis Function Network Classifier," Measurement, vol 28, pp 147-155,2000.
- [12]. Alqadi B., Mismar D., Sukusov E, "Fault Diagnostic of Dynamic Analog Circuit" Jordan Journal of Applied Science, Vol.3 (5), pp 1-13, 2001
- [13]. Hagen S., "Neural Networks": A Comprehensive Foundation, 2nd edition Prentice Hall, 1988
- [14]. E. Sali, D. Meyers, "An Introduction to Numerical