FUZZY γ-CONTINUOUS MULTIFUNCTION

Anjana Bhattacharyya¹

Department of Mathematics, Victoria Institution (College)

78 B, A.P.C. Road, Kolkata – 700009(India)

ABSTRACT

This paper deals with a new type of fuzzy multifunction, viz., fuzzy upper (lower) γ -continuous multifunction. Several characterizations and properties of this newly defined multifunction have been studied here. Also the mutual relationships of this fuzzy multifunction with fuzzy upper (lower) δ -precontinuous multifunctions [8] have been established here.

Keywords: Fuzzy nbd of a fuzzy set, γ -nbd of a subset A of a topological space, γ -frontier of a subset A of a topological space, fuzzy compact space.

2000 Ams Subject Classification Code Primary 54a40, Secondary 54c99

I INTRODUCTION

A fuzzy multifunction, introduced by Papageorgiou [21] in 1985 is a function from an ordinary topological space X to a fuzzy topological space (fts, for short) Y in the sense of Chang [10]. In this paper we use the definition of upper inverse of fuzzy multifunction given by Papageorgiou [21] and the lower inverse of fuzzy multifunction given by Mukherjee and Malakar [18].

Throughout this paper, (X, τ) or simply X will stand for an ordinary topological space, while by (Y, τ_Y) or simply by Y will always be denoted a fuzzy topological space. A fuzzy set A [26] in Y is a function from Y into the unit interval I = [0, 1] i.e., $A \in I^Y$. The support [26] of a fuzzy set A in Y will be denoted by supp A and is defined by $supp A = \{y \in Y : A(y) \neq 0\}$. The fuzzy point [22] with the singleton support $y \in Y$ and the value t ($0 < t \le 1$) at y will be denoted by y_t . For a set A in X (resp., a fuzzy set A in Y), clA and intA will respectively stand for closure and interior of A in X (resp., fuzzy closure and fuzzy interior of A in Y [10]). For a fuzzy set A in A in A will be denoted by A and is defined by A and A in A will be denoted by A and is defined by A and is defined by A and A in A will be denoted by A and is defined by A and is defined by A and A in A will be denoted by A and is defined by A and is defined by A and in A will be denoted by A and is defined by A and in A will be denoted by A and is defined by A and in A will be denoted by A and is defined by A and in A will be denoted by A and is defined by A and in A will be denoted by A and is defined by A and in A will be denoted by A and is defined by A and in A will be denoted by A and is defined by A and in A will be denoted by A and is defined by A and in A will be denoted by A and in A

¹The author acknowledges the financial support from UGC (Minor Research Project), New Delhi

 $A \leq B$ [26] iff $A(y) \leq B(y)$, for all $y \in Y$ while AqB means A is quasi-coincident [22] (q-coincident, for short) with B if there is some $y \in Y$ such that A(y) + B(y) > 1. The negation of the last two statements are written as $A \leq B$ and $A\bar{q}B$ respectively. A fuzzy set A in Y is called a fuzzy neighbourhood (fuzzy nbd, for short) [22] of a fuzzy set B in Y if there is a fuzzy open set U in Y such that $B \leq U \leq A$.

A subset A of X (resp., a fuzzy set A in Y) is called semiopen [15], α -open [20], β -open [1], regular open [24], preopen [16], γ-open [11] (resp., fuzzy semiopen [4], fuzzy α-open [9], fuzzy β-open [12], fuzzy regular open [4], $A \subseteq ci(intA)$ $A \subseteq int(cl(intA))$ fuzzy preopen [19], fuzzy γ-open) respectively if $A \subseteq cl(int(clA)), A = int(clA), A \subseteq int(clA), A \subseteq (cl(intA)) \cup (int(clA))$ (resp., $A \le cl(intA)$, $A \leq int(cl(intA)), A \leq cl(int(clA)), A = int(clA), A \leq int(clA), A \leq (cl(intA)) \cup (int(clA))$ respectively. The complements of above mentioned sets in X (resp., in Y) are called semiclosed [15], α -closed [20], β -closed [1], preclosed [16], regular closed [24], γ-closed [11] (resp., fuzzy semiclosed [4], fuzzy α-closed [9], fuzzy β-closed [12], fuzzy regular closed [4], fuzzy preclosed [19], fuzzy γ -closed) respectively. The intersection of all semiclosed, α -closed, β -closed, preclosed, γ -closed sets in X (resp., fuzzy sets in Y) containing A are called semiclosure [15], α closure [20], β -closure [1], preclosure [16], γ -closure [11] (resp., fuzzy semiclosure [4], fuzzy α -closure [9], fuzzy β closure [12], fuzzy preclosure [19], fuzzy γ-closure) respectively and are denoted by sclA, αclA, βclA, pclA, γclA respectively. The δ -interior [25] of a subset A of X is the union of all regular open sets of X contained in A and is denoted by $\delta intA$. A subset A of X is called δ -open if $A = \delta intA$ [25]. The complement of a δ -open set in X is called δ -closed. For a set A in X, $\delta clA = \{x \in X : A \cap (int(clU)) \neq \emptyset, U \in \tau, x \in U\}$. A subset A of X is called δ preopen [2] if $A \leq int(\delta clA)$. A fuzzy set B is called a quasi-neighbourhood (q-nbd, for short) [21] of a fuzzy set A if there is a fuzzy open set U in Y such that $AqU \leq B$. If, in addition, B is fuzzy regular open, then B is called fuzzy regular open q-nbd of A. A fuzzy point x_{α} is said to be a fuzzy δ -cluster point of a fuzzy set A in an fts Y if every fuzzy regular open q-nbd U of x_{α} is q-coincident with A [13]. The union of all fuzzy δ -cluster points of A is called the fuzzy δ -closure of A and is denoted by δclA [13]. A fuzzy set A in an fts Y is called fuzzy δ -preopen [5] if $A \leq int(\delta clA)$. The complement of a fuzzy δ -preopen set is called fuzzy δ -preclosed [5]. The intersection of all fuzzy δ -preclosed sets containing a fuzzy set A in an fts Y is called fuzzy δ -preclosure of A and is denoted by $\delta pclA$ [5]. A fuzzy set A in Y is δ -preclosed iff $A = \delta pclA$ [5].

The set of all semiopen, α -open, β -open, preopen, γ -open, δ -preopen sets in X are denoted by SO(X), $\alpha O(X)$, $\beta O(X)$, $\gamma O(X)$, $\delta PO(X)$ respectively. A semiopen (resp., α -open, β -open, preopen, γ -open, δ -preopen) set U in X containing a point $x \in X$ will be denoted by $U \in SO(X,x)$ (resp., $U \in \alpha O(X,x)$, $U \in \beta O(X,x)$, $U \in PO(X,x)$, $U \in \gamma O(X,x)$, $U \in \delta PO(X,x)$). The union of all γ -open sets contained in A is called γ -interior of A [11], to be

denoted by $\gamma int A$. A subset U of a topological space X is called a γ -nbd of a point $x \in X$ [11] if there exists $V \in \gamma O(X, x)$ such that $V \subseteq U$.

II SOME WELL KNOWN DEFINITIONS, THEOREM AND LEMMAS

In this section we recall, some definitions, lemmas and theorem for ready references.

Definition 2.1 [21]. Let (X, τ) be an ordinary topological space and (Y, τ_Y) be an fts. We say that $F: X \to Y$ is a fuzzy multifunction if corresponding to each $X \in X$, F(X) is a unique fuzzy set in Y.

Henceforth by $F: X \to Y$ we shall mean a fuzzy multifunction in the above sense.

Definition 2.2 [21, 18]. For a fuzzy multifunction $F: X \to Y$, the upper inverse F^+ and the lower inverse F^- are defined as follows:

for any fuzzy set A in Y, $F^+(A) = \{x \in X : F(x) \le A\}, F^-(A) = \{x \in X : F(x) \neq A\}.$

Theorem 2.3 [18]. For a fuzzy multifunction $F: X \to Y$, we have $F^{-}(1_Y \setminus A) = X \setminus F^{+}(A)$, for any fuzzy set A in Y.

Definition 2.4 [10]. Let A be a fuzzy set in an fts Y. A collection \mathscr{U} of fuzzy sets in Y is called a fuzzy cover of A if $\sup \{U(x): U \in \mathscr{U}\} = 1$ for each $x \in \sup A$. If, in addition, the members of \mathscr{U} are fuzzy open, then \mathscr{U} is called a fuzzy open cover of A. In particular, if $A = 1_Y$, we get the definition of fuzzy cover (resp., fuzzy open cover) of the fts Y.

Definition 2.5 [14]. A fuzzy cover \mathscr{U} of a fuzzy set A in an fts Y is said to have a finite subcover \mathscr{U}_0 if \mathscr{U}_0 is a finite subcollection of \mathscr{U} such that $0 \mathscr{U}_0 \ge A$. Clearly, if $A = \mathbf{1}_Y$, in particular, then the requirements on \mathscr{U}_0 is $0 \mathscr{U}_0 = \mathbf{1}_Y$.

Definition 2.6 [10]. An fts Y is said to be fuzzy compact if every fuzzy open cover of Y has a finite subcover.

Definition 2.7 [18]. A fuzzy multifunction $F: X \to Y$ is said to be fuzzy upper (lower) semi-continuous if $F^+(V)$ (resp., $F^-(V)$) is open in X for every fuzzy open set V in Y.

Definition 2.8 [8]. A fuzzy multifunction $F: X \to Y$ is said to be fuzzy

- (i) upper δ -precontinuous (resp., upper quasi continuous) if for each $x \in X$ and each fuzzy open set V in Y with $F(x) \leq V$, there exists $U \in \delta PO(X, x)$ (resp., $U \in SO(X, x)$) such that $F(U) \leq V$,
- (ii) lower δ -precontinuous (resp., lower quasi continuous) if for each $x \in X$ and each fuzzy open set V in Y with F(x)qV, there exists $U \in \delta PO(X,x)$ (resp., $U \in SO(X,x)$) such that F(u)qV, for all $u \in U$,

(iii) upper (lower) δ -precontinuous (resp., upper (lower) quasi continuous) if it has this property at each point of X.

Lemma 2.9 [3, 11]. Let A and X_0 be subsets of a topological space (X, τ) . If $A \in \gamma O(X)$ and $X_0 \in \alpha O(X)$, then $A \cap X_0 \in \gamma O(X_0)$.

Lemma 2.10 [11]. Let $A \subseteq X_0 \subseteq X, X_0 \in \gamma O(X)$ and $A \in \gamma O(X_0)$, then $A \in \gamma O(X)$.

III FUZZY UPPER AND LOWER γ -CONTINUOUS MULTIFUNCTIONS : SOME CHARACTERIZATIONS

Now we define fuzzy upper (lower) γ -continuous multifunction and characterize these fuzzy multifunctions in several ways.

Definition 3.1. A fuzzy multifunction $F: X \to Y$ is said to be fuzzy

- (i) upper γ -continuous at a point $x \in X$ if for each fuzzy open set V in Y with $F(x) \leq V$, there exists $U \in \gamma O(X, x)$ such that $F(U) \leq V$.
- (ii) lower γ -continuous at a point $x \in X$ if for each fuzzy open set V of Y with F(x)qV, there exists $U \in \gamma O(X, x)$ such that F(u)qV, for all $u \in U$,
- (iii) upper (lower) γ -continuous if F has this property at each point of X.

Theorem 3.2. For a fuzzy multifunction $F: X \to Y$, the following are equivalent:

- (a) F is fuzzy upper γ -continuous,
- (b) $F^+(V) \in \gamma O(X)$ for any fuzzy open set V of Y.
- (c) $F^-(V)$ is γ -closed in X for any fuzzy closed set V of Y,
- (d) $\gamma cl(F^{-}(B)) \subseteq F^{-}(clB)$, for any $B \in I^{\gamma}$,
- (e) for each point $x \in X$ and each fuzzy nbd V of F(x), $F^+(V)$ is a γ -nbd of x,
- (f) for each point $x \in X$ and each fuzzy nbd V of F(x), there exists a γ -nbd U of x such that $F(U) \leq V$,
- (g) $(cl(int(F^{-}(B)))) \cap (int(cl(F^{-}(B)))) \subseteq F^{-}(clB), \text{ for any } B \in I^{Y},$
- $(h) \ F^+(intB)\subseteq \left(int\left(cl\big(F^+(B)\big)\right)\right)\cup (cl\left(int\big(F^+(B)\big)\right)), \text{ for any } B\in I^Y.$

Proof (a) \Rightarrow (b): Let V be a fuzzy open set of Y and $x \in F^+(V)$. Then by (a), there exists $U \in \gamma O(X, x)$ such that $F(U) \leq V$. Therefore, we obtain $x \in U \subseteq (cl(intU)) \cup (int(clU)) \subseteq$

$$\left(cl\left(int\left(F^{+}(V)\right)\right)\right) \cup \left(int\left(cl\left(F^{+}(V)\right)\right)\right)$$
 and so we have $F^{+}(V) \subseteq \left(cl\left(int\left(F^{+}(V)\right)\right)\right) \cup \left(int\left(cl\left(F^{+}(V)\right)\right)\right) \Rightarrow F^{+}(V) \in \gamma O(X)$.

- (b) \Rightarrow (c): It follows from the fact that $F^+(1_Y \setminus B) = X \setminus F^-(B)$, for any $B \in I^Y$.
- (c) \Rightarrow (d): Let $B \in I^Y$. Then clB is fuzzy closed in Y and so by (c), $F^-(clB)$ is γ -closed in X and so

$$\gamma cl(F^-(clB)) \subseteq F^-(clB) \Rightarrow \gamma cl(F^-(B)) \subseteq \gamma cl(F^-(clB)) \subseteq F^-(clB).$$

(d) \Rightarrow (c): Let V be a fuzzy closed set of Y. Then clV = V and so by (d),

$$\gamma cl(F^-(V)) \subseteq F^-(clV) = F^-(V) \Longrightarrow F^-(V) \text{ is } \gamma\text{-closed in } X.$$

- (b) \Rightarrow (e): Let $x \in X$ and V be a fuzzy nbd of F(x). Then there exists a fuzzy open set G of Y such that $F(x) \leq G \leq V \Rightarrow x \in F^+(G) \subseteq F^+(V)$. Since $F^+(G) \in \gamma O(X)$ (by (b)), $F^+(V)$ is a γ -nbd of X.
- (e) \Rightarrow (f): Let $x \in X$ and V be a fuzzy nbd of F(x). Put $U = F^+(V)$. By (e), U is a γ -nbd of X and Y and Y and Y is a Y-nbd of Y.
- (f) \Rightarrow (a): Let $x \in X$ and V be a fuzzy open set such that $F(x) \leq V$. Then V is a fuzzy nbd of F(x). By (f), there exists a γ -nbd U of x such that $F(U) \leq V$. Therefore, there exists $W \in \gamma O(X)$ such that $x \in W \subseteq U$ and so $F(W) \leq F(U) \leq V \Rightarrow F(W) \leq V$.
- $(c) \Rightarrow (g) : \text{Let } B \in I^Y. \text{ Then } clB \text{ is fuzzy closed in } Y \text{ and so by } (c), F^-(clB) \text{ is } \gamma\text{-closed in } X \Rightarrow F^-(clB) \supseteq (int \left(cl(F^-(clB))\right)) \cap (cl\left(int(F^-(clB))\right)) \supseteq (int\left(cl(F^-(B))\right)) \cap (cl\left(int(F^-(B))\right)).$
- $$\begin{split} &(\mathbf{g}) \Rightarrow (\mathbf{h}) : \mathrm{Let} \ B \in I^{Y}. \ \mathrm{Then} \ \mathbf{1}_{Y} \backslash B \in I^{Y}. \ \mathrm{By} \ (\mathbf{g}), \\ &F^{-}(cl(\mathbf{1}_{Y} \backslash B)) \supseteq (cl\left(int\left(F^{-}(\mathbf{1}_{Y} \backslash B)\right)\right)) \cap (int\left(cl\left(F^{-}(\mathbf{1}_{Y} \backslash B)\right)\right)) \Rightarrow F^{-}(\mathbf{1}_{Y} \backslash intB) \supseteq (cl\left(int\left(X \backslash F^{+}(B)\right)\right)) \cap (int\left(cl\left(X \backslash F^{+}(B)\right)\right)) \end{aligned}$$

$$\Rightarrow X \setminus F^{+}(intB) \supseteq \Big(X \setminus int \Big(cl \big(F^{+}(B) \big) \Big) \Big) \cap \Big(X \setminus cl \Big(int \big(F^{+}(B) \big) \Big) \Big) = X \setminus ((int \Big(cl \big(F^{+}(B) \big) \big)) \cup (cl \Big(int \big(F^{+}(B) \big) \big))$$

$$\Rightarrow F^{+}(intB) \subseteq (int \Big(cl \big(F^{+}(B) \big) \big)) \cup (cl \Big(int \big(F^{+}(B) \big) \big)).$$

(h) \Rightarrow (b) : Let V be a fuzzy open set of Y. By (h), $F^+(intV) = F^+(V) \subseteq (int(cl(F^+(V)))) \cup (cl(int(F^+(V))))$ $\Rightarrow F^+(V) \in \gamma O(X)$.

Theorem 3.3. For a fuzzy multifunction $F: X \to Y$, the following are equivalent:

- (a) \mathbf{F} is fuzzy lower γ -continuous,
- (b) $F^{-}(V) \in \gamma O(X)$, for any fuzzy open set V of Y,
- (c) $F^+(V)$ is γ -closed in X for any fuzzy closed set V of Y,
- (d) $\gamma cl(F^+(B)) \subseteq F^+(clB)$, for any $B \in I^{\gamma}$,
- (e) $F(\gamma clA) \leq clF(A)$, for any subset A of X,

$$(f)(cl(int(F^+(B)))) \cap (int(cl(F^+(B)))) \subseteq F^+(clB), \text{ for any } B \in I^Y,$$

$$(g) F^{-}(intB) \subseteq \Big(int\Big(cl\big(F^{-}(B)\big)\Big)\Big) \cup (cl\Big(int\big(F^{-}(B)\big)\Big)), \text{ for any } B \in I^{Y},$$

- (h) for each $x \in X$ and each fuzzy q-nbd V of F(x), $F^{-}(V)$ is a γ -nbd of x,
- (i) for each $x \in X$ and each fuzzy q-nbd V of F(x), there exists a γ -nbd U of x such that F(u) qV, for all $u \in U$.

Proof (a) \Rightarrow (b): Let V be a fuzzy open set of Y and $x \in F^-(V)$. Then by (a), there exists $U \in \gamma O(X, x)$ such that $F(u) \neq V$, for all $u \in U \Rightarrow U \subseteq F^-(V)$. Therefore, we obtain

$$x \in U \subseteq (cl(intU)) \cup (int(clU)) \subseteq (cl(int(F^-(V)))) \cup (int(cl(F^-(V))))$$
 and so we have $F^-(V) \subseteq (cl(int(F^-(V)))) \cup (int(cl(F^-(V)))) \Rightarrow F^-(V) \in \gamma O(X)$.

- (b) \Rightarrow (c): It follows from the fact that $F^+(1_Y \setminus B) = X \setminus F^-(B)$, for any $B \in I^Y$.
- (c) \Rightarrow (d): Let $B \in I^Y$. Then clB is fuzzy closed in Y. By (c), $F^+(clB)$ is γ -closed in $X \Rightarrow \gamma cl(F^+(B)) \subseteq \gamma cl(F^+(clB)) \subseteq F^+(clB)$.
- (d) \Rightarrow (c): Let V be a fuzzy closed set of Y. Then clV = V. By (d), $\gamma cl(F^+(V)) = \gamma cl(F^+(clV)) \subseteq F^+(clV) = F^+(V) \Rightarrow F^+(V) \text{ is } \gamma\text{-closed in } X.$
- (c) \Rightarrow (e) : Let A be a subset of X. Then clF(A) is fuzzy closed in Y. By (c), $F^+(clF(A))$ is γ -closed in $X \Rightarrow \gamma cl(F^+(clF(A))) \subseteq F^+(clF(A)) \Rightarrow F(\gamma cl(F^+(clF(A)))) \le clF(A) \Rightarrow clF(A) \ge F(\gamma cl(F(A))) \ge F(\gamma clA)$.

(e)
$$\Rightarrow$$
 (d): Let $B \in I^{\gamma}$. Then $F^+(B) \subseteq X$. By (e), $F(\gamma cl(F^+(B))) \le clF(F^+(B)) \le clB \Rightarrow \gamma cl(F^+(B)) \subseteq F^+(clB)$.

(c)
$$\Rightarrow$$
 (f): Let $B \in I^Y$. Then clB is fuzzy closed in Y . By (c), $F^+(clB)$ is γ -closed in $X \Rightarrow$

$$F^+(clB) \supseteq \left(int\left(cl\big(F^+(clB)\big)\right)\right) \cap \left(cl\left(int\big(F^+(clB)\big)\right)\right) \supseteq int(cl\big(F^+(B)\big)) \cap cl(int\big(F^+(B)\big)).$$

(f)
$$\Rightarrow$$
 (g): Let $B \in I^{\gamma}$. Then $\mathbf{1}_{\gamma} \setminus B \in I^{\gamma}$. By (f),

$$F^+(cl(1_Y \backslash B)) \supseteq cl\left(int\left(F^+(1_Y \backslash B)\right)\right) \cap int\left(cl\left(F^+(1_Y \backslash B)\right)\right) \Rightarrow F^+(1_Y \backslash intB) \supseteq cl\left(int\left(X \backslash F^-(B)\right)\right) \cap int\left(cl\left(X \backslash F^-(B)\right)\right)$$

$$\Rightarrow X \setminus F^{-}(intB) \supseteq (X \setminus int(cl(F^{-}(B)))) \cap (X \setminus cl(int(F^{-}(B)))) =$$

$$X\setminus ((int\left(cl\big(F^-(B)\big)\big))\cup (cl\left(int\big(F^-(B)\big)\big)))\Rightarrow F^-(intB)\subseteq (int\left(cl\big(F^-(B)\big)\big))\cup (cl\left(int\big(F^-(B)\big)\right)).$$

$$(g) \Rightarrow (b) : \text{Let } V \text{ be a fuzzy open set of } Y \text{. By } (g), \ F^+(intV) = F^-(V) \subseteq (int \left(cl \left(F^-(V) \right) \right)) \cup \left(cl \left(int \left(F^-(V) \right) \right) \right)$$

$$\Rightarrow F^-(V) \in \gamma O(X)$$
.

(b) \Rightarrow (h): Let Let $x \in X$ and V be a fuzzy q-nbd of F(x). Then there exists a fuzzy open set G of Y such that $F(x)qG \leq V \Rightarrow x \in F^{-}(G) \subseteq F^{-}(V)$. Since $F^{-}(G) \in \gamma O(X)$ (by (b)), $F^{-}(V)$ is a γ -nbd of X.

(h) \Rightarrow (i): Let $x \in X$ and V be a fuzzy q-nbd of F(x). Put $U = F^-(V)$. By (h), U is a γ -nbd of X and Y and Y for all $Y \in U$.

(i) \Rightarrow (a): Let $x \in X$ and V be a fuzzy open set such that F(x)qV. Then V is a fuzzy q-nbd of F(x). By (i), there exists a γ -nbd U of X such that F(u)qV, for all $u \in U \Rightarrow U \subseteq F^-(V)$. Therefore, there exists $W \in \gamma O(X)$ such that $X \in W \subseteq U$ and so $W \subseteq F^-(V) \Rightarrow F(w)qV$, for all $W \in W$.

Definition 3.4 [18]. For a fuzzy multifunction $F: X \to Y$, the fuzzy graph multifunction $G_F: X \to X \times Y$ of F is defined as $G_F(x) =$ the fuzzy set $x_1 \times F(x)$ of $X \times Y$, where x_1 is the fuzzy set in X, whose value is 1 at $x \in X$ and 0 other points of X. We shall write $\{x\} \times F(x)$ for $x_1 \times F(x)$.

Lemma 3.5 [6]. The following hold for a fuzzy multifunction $F: X \to Y$:

- (a) $(G_F)^+(A \times B) = A \cap F^+(B)$ and
- (b) $(G_F)^-(A \times B) = A \cap F^-(B)$ for every subset A of X and every fuzzy set B of Y.

Theorem 3.6. A fuzzy multifunction $F: X \to Y$ is fuzzy lower γ -continuous iff $G_F: X \to X \times Y$ is so.

Proof. Let F be fuzzy lower γ -continuous. Let $x \in X$ and W be any fuzzy open set of $X \times Y$ such that $G_F(x)qW$. Then there exists $(x,y) \in X \times Y$ such that $[\{x\} \times F(x)](x,y) + W(x,y) > 1$. Then [F(x)](y) + W(x,y) > 1. Let $[F(x)](y) = \alpha$. Then $W(x,y) > 1 - \alpha \Rightarrow (x,y)_{\alpha}qW$ so that $(x,y)_{\alpha}q(U \times V) \leq W$ for some open set U in X and some fuzzy open set V in Y with $y_{\alpha}qV$. Now $V(y) + \alpha > 1 \Rightarrow V(y) + [F(x)](y) > 1 \Rightarrow VqF(x)$. Since F is fuzzy lower γ -continuous, there exists $G \in \gamma O(X,x)$ such that F(g)qV, for all $g \in G \Rightarrow G \subseteq F^-(V)$. Then by Lemma 2.5(b), $U \cap G \subseteq U \cap F^-(V) = (G_F)^-(U \times V) \subseteq (G_F)^-(W)$. Moreover, $x \in U \cap G \in \gamma O(X)$ and hence the proof.

Conversely, let G_F be fuzzy lower γ -continuous. Let $x \in X$ and V be any fuzzy open set in Y such that F(x)qV. Then there exists $y \in Y$ such that [F(x)](y) + V(y) > 1. Now $1_X \times V$ is open in $X \times Y$ such that $\{x \times F(x)\}(x,y) + (1_X \times V)(x,y) > 1$ and so $G_F(x)q(1_X \times V)$. Since G_F is fuzzy lower γ -continuous, there exists $U \in \gamma O(X,x)$ such that $G_F(u)q(1_X \times V)$, for all $u \in U$. By Lemma 2.5(b), we obtain $U \subseteq (G_F)^-(1_X \times V) = 1_X \cap F^-(V) = F^-(V)$. Hence F(u)qV, for all $u \in U \Rightarrow F$ is fuzzy lower γ -continuous.

Theorem 3.7. Let $\{U_{\alpha}: \alpha \in \Lambda\}$ be an α -open cover of a topological space X. A fuzzy multifunction $F: X \to Y$ is fuzzy upper γ -continuous iff the restriction $F/U_{\alpha}: U_{\alpha} \to Y$ is fuzzy upper γ -continuous.

Proof. Let $x \in X$. Then there exists $\alpha \in \Lambda$ such that $x \in U_{\alpha}$. Let V be a fuzzy open set of Y such that $\binom{F}{U_{\alpha}}(x) = F(x) \le V$. Since F is fuzzy upper γ -continuous, there exists $G \in \gamma O(X, x)$ such that $F(G) \le V$. Put $U = G \cap U_{\alpha}$. Then by Lemma 1.9, $U \in \gamma(U_{\alpha}, x)$ and $\binom{F}{U_{\alpha}}(U) = F(U) \le V$. Therefore, $\binom{F}{U_{\alpha}}(U) = F(U) \le V$. Therefore, $\binom{F}{U_{\alpha}}(U) = F(U) \le V$. Therefore, $\binom{F}{U_{\alpha}}(U) = F(U) \le V$.

Conversely, let $x \in X$ and V, a fuzzy open set of Y such that $F(x) \leq V$. Since $\{U_{\alpha} : \alpha \in \Lambda\}$ is an α -open cover of X, there exists $\beta \in \Lambda$ such that $x \in U_{\beta}$. Since F/U_{β} is fuzzy upper γ -continuous and $\left(F/U_{\beta}\right)(x) = F(x) \leq V$, there exists $U \in \gamma O(U_{\beta}, x)$ such that $\left(F/U_{\beta}\right)(U) = F(U) \leq V$. Then by Lemma 1.10 (as α -open sets are γ -open), $U \in \gamma O(X, x)$ and $F(U) = (F/U_{\beta})(U) \leq V \Rightarrow F$ is fuzzy upper γ -continuous.

Theorem 3.8. Let $\{U_{\alpha}: \alpha \in \Lambda\}$ be an α -open cover of a topological space X. A fuzzy multifunction $F: X \to Y$ is fuzzy lower γ -continuous iff the restriction $F/U_{\alpha}: U_{\alpha} \to Y$ is fuzzy lower γ -continuous.

Proof. Let $x \in X$. Then there exists $\alpha \in \Lambda$ such that $x \in U_{\alpha}$. Let V be a fuzzy open set of Y such that $\binom{F}{U_{\alpha}}(x) = F(x)qV$. Since F is fuzzy lower γ -continuous, there exists $G \in \gamma O(X, x)$ such that F(g)qV, for all

 $g \in G$. Put $U = G \cap U_{\alpha}$. Then by Lemma 1.9, $U \in \gamma O(U_{\alpha}, x)$ and $\binom{F}{U_{\alpha}}(u) = F(u)qV$, for all $u \in U$. Therefore, $\binom{F}{U_{\alpha}}$ is fuzzy lower γ -continuous.

Conversely, let $x \in X$ and V, a fuzzy open set of Y such that F(x)qV. Since $\{U_\alpha : \alpha \in \Lambda\}$ is an α -open cover of X, there exists $\beta \in \Lambda$ such that $x \in U_\beta$. Since F/U_β is fuzzy lower γ -continuous and $(F/U_\beta)(x) = F(x)qV$, there exists $U \in \gamma O(U_\beta, x)$ such that $(F/U_\beta)(u) = F(u)qV$, for all $u \in U$. Then by Lemma 1.10 (as α -open sets are γ -open), $U \in \gamma O(X, x)$ and $F(u) = (F/U_\beta)(u)qV$, for all $u \in U \Rightarrow F$ is fuzzy lower γ -continuous.

Definition 3.9. For a fuzzy multifunction $F: X \to Y$, fuzzy multifunction $\gamma clF: X \to Y$, $\beta clF: X \to Y$, $\alpha clF: X \to Y$, $sclF: X \to Y$ [6], $pclF: X \to Y$, $clF: X \to Y$ [6], $\delta pclF: X \to Y$ [8] are defined by $(\gamma clF)(x) = \gamma clF(x)$, $(\beta clF)(x) = \beta clF(x)$, $(\alpha clF)(x) = \alpha clF(x)$, (sclF)(x) = sclF(x), (pclF)(x) = pclF(x), $(\delta pclF)(x) = \delta pclF(x)$, (sclF)(x) = sclF(x), (sclF)

Lemma 3.10. Let $F: X \to Y$ be a fuzzy multifunction. Then we have $(yclF)^-(G) = F^-(G)$, for each fuzzy open set G of Y.

Proof. Let G be a fuzzy open set of Y. Let $x \in (\gamma clF)^-(G)$. Then $(\gamma clF)(x) qG \Rightarrow F(x) qG$ [Indeed, if $F(x)\overline{q}G$, then $[F(x)](y) + G(y) \leq 1$, for each $y \in Y \Rightarrow F(x) \leq 1_Y \setminus G \Rightarrow \gamma clF(x) \leq \gamma cl(1_Y \setminus G) = 1_Y \setminus G$ (since G is fuzzy open $\Rightarrow G$ is fuzzy γ -open in Y) $\Rightarrow \gamma clF(x)\overline{q}G$, a contradiction.] $\Rightarrow x \in F^-(G)$.

Similarly we can prove that

Lemma 3.11. Let $F: X \to Y$ be a fuzzy multifunction. Then we have $(\beta clF)^-(G) = F^-(G)$, $(\alpha clF)^-(G) = F^-(G)$, $(sclF)^-(G) = F^-(G)$, $(spclF)^-(G) = F^-(G)$, $(spclF)^-(G) = F^-(G)$, for each fuzzy open set G of Y.

Theorem 3.12. For a fuzzy multifunction $F: X \to Y$, the following are equivalent:

- (a) F is fuzzy lower γ -continuous.
- (b) γclF is fuzzy lower γ -continuous.
- (c) βclF is fuzzy lower γ -continuous.
- (d) αclF is fuzzy lower γ -continuous.
- (e) sclF is fuzzy lower γ -continuous.
- (f) pclF is fuzzy lower γ -continuous.

- (g) *clF* is fuzzy lower γ -continuous.
- (h) $\delta pclF$ is fuzzy lower γ -continuous.

Proof. The proof follows from Lemma 2.10 and Lemma 2.11.

IV SOME RELATIONSHIP

In this section it has been shown that fuzzy upper (lower) γ -continuous multifunction may not be fuzzy upper (lower) semi-continuous, fuzzy upper (lower) quasi continuous, fuzzy upper (lower) δ -precontinuous multifunctions.

We first recall some theorems for ready references.

Theorem 4.1 [7]. A fuzzy multifunction $F: X \to Y$ is fuzzy upper (lower) quasi continuous iff $F^+(G)$ (resp., $F^-(G)$) is semiopen in X for every fuzzy open set G of Y.

Theorem 4.2 [18]. A fuzzy multifunction $F: X \to Y$ is fuzzy upper (lower) semi-continuous iff $F^+(G)$ (resp., $F^-(G)$) is open in X for every fuzzy open set G of Y.

Theorem 4.3 [8]. A fuzzy multifunction $F: X \to Y$ is fuzzy upper (lower) δ -precontinuous iff $F^+(G)$ (resp., $F^-(G)$) is δ -preopen in X for every fuzzy open set G of Y.

Remark 4.4. Since open set, semiopen set and δ -preopen set are γ -open, it is clear from Theorem 3.1, Theorem 3.2 and Theorem 3.3 that fuzzy upper (lower) quasi continuous, fuzzy upper (lower) semi-continuous and fuzzy upper (lower) δ -precontinuous multifunctions are fuzzy upper (lower) γ -continuous. But the converses are not true, in general, as seen from the following examples.

Example 4.5. fuzzy upper γ -continuity \Rightarrow fuzzy upper semi-continuity

Let $X = \{a, b, c\}$, Y = [0, 1], $\tau = \{\emptyset, X\}$, $\tau_Y = \{0_Y, 1_Y, A, B\}$ where A(y) = 0.35, B(y) = 0.4, for all $y \in Y$. Then (X, τ) and (Y, τ_Y) are ordinary topological space and an fts respectively. Let $F : (X, \tau) \to (Y, \tau_Y)$ be a fuzzy multifunction defined by F(a) = A, F(b) = B, F(c) = C where C(y) = 0.6, for all $y \in Y$. Now $F^+(A) = \{x \in X : F(x) \le A\} = \{a\} \notin \tau$ and so F is not fuzzy upper semi-continuous.

But $F^+(A) = \{a\} \Rightarrow int(cl(\{a\})) = X \Rightarrow \{a\} \subseteq (cl(int(\{a\}))) \cup (int(cl(\{a\}))) \Rightarrow F^+(A) \text{ is } \gamma \text{-open in } X.$

Again $F^+(B) = \{a, b\} \subseteq int(cl(\{a, b\})) = X \Rightarrow \{a, b\} \subseteq (cl(int(\{a, b\}))) \cup (int(cl(\{a, b\}))) \Rightarrow F^+(B) \text{ is } \gamma$ open in X which shows that $F^+(V)$ is γ -open in X for all fuzzy open set Y of $Y \Rightarrow F$ is fuzzy upper γ -continuous.

Example 4.6. fuzzy lower γ -continuity \Rightarrow fuzzy lower semi-continuity

International Journal of Advance Research In Science And Engineering IJARSE, Vol. No.4, Issue No.02, February 2015

http://www.ijarse.com ISSN-2319-8354(E)

Let $X = \{a, b, c\}$, Y = [0, 1], $\tau = \{\emptyset, X\}$, $\tau_Y = \{0_Y, 1_Y, A, B\}$ where A(y) = 0.35, B(y) = 0.5, for all $y \in Y$. Then (X, τ) and (Y, τ_Y) are ordinary topological space and an fts respectively. Let $F : (X, \tau) \to (Y, \tau_Y)$ be a fuzzy multifunction defined by $F(\alpha) = A$, F(b) = B, F(c) = C where C(y) = 0.6, for all $y \in Y$. Now $F^-(A) = \{x \in X : F(x) \ qA\} = \emptyset \in \tau$ and $F^-(B) = \{c\}$, $int(cl(\{c\})) = X \Rightarrow F$ is fuzzy lower γ -continuous. But $F^-(B) \notin \tau$ and so F is not fuzzy lower semi-continuous.

Example 4.7. fuzzy upper γ -continuity \Rightarrow fuzzy upper quasi-continuity

Consider Example 3.5. Here $F^+(A) = \{a\} \nsubseteq cl(int(\{a\})) = \emptyset \Rightarrow F$ is not fuzzy upper quasi-continuous, though F is upper γ -continuous.

Example 4.8. fuzzy lower γ -continuity \Rightarrow fuzzy lower quasi-continuity

Consider Example 3.6. Here $F^-(B) = \{c\} \nsubseteq cl(int(\{c\})) = \emptyset \Rightarrow F^-(B)$ is not semiopen in $X \Rightarrow F$ is not fuzzy lower quasi-continuous, though it is fuzzy lower γ -continuous.

Example 4.9. fuzzy upper γ -continuity \Rightarrow fuzzy upper δ -precontinuity

Consider Example 3.5. Here $F^+(A) = \{a\}$. Now $\delta cl(\{a\}) = \{x \in X : \{a\} \cap (int(clU)) \neq \emptyset, U \in \tau$ and $x \in U\} = \{a\}$, $int(\delta cl(\{a\})) = \emptyset \not\supseteq \{a\} \Rightarrow \{a\}$ is not δ -preopen in $X \Rightarrow F$ is not fuzzy upper δ -precontinuous, though F is fuzzy upper γ -continuous.

Example 4.10. fuzzy lower γ -continuity \Rightarrow fuzzy lower δ -precontinuity

Consider Example 3.6. Here $F^-(B) = \{c\}$. Now $\delta cl(\{c\}) = \{c\} \Rightarrow int(\delta cl(\{c\})) = \emptyset \not\supseteq \{c\} \Rightarrow F$ is fuzzy lower δ -precontinuous, though F is fuzzy lower γ -continuous.

V FUZZY UPPER (LOWER) γ -CONTINUOUS MULTIFUNCTION: SOME CHARACTERIZATIONS AND APPLICATIONS

In this section fuzzy upper (lower) γ -continuous multifunction is characterized by fuzzy upper (lower) nbd of a fuzzy set and also some applications of these fuzzy multifunctions have been given.

Definition 5.1. A fuzzy set A in an fts Y is said to be a fuzzy lower (upper) nbd of a fuzzy set B in Y if there exists a fuzzy open set V of Y such that $B \neq V$ (resp., $B \leq V$) and $V \neq (1_X \setminus A)$.

Theorem 5.2. A fuzzy multifunction $F: X \to Y$ is fuzzy upper γ -continuous on X iff for each point $x_0 \in X$ and each fuzzy upper nbd M of $F(x_0)$, $F^+(M)$ is a γ -nbd of x_0 .

Proof. Let F be fuzzy upper γ -continuous. Then for any $x_0 \in X$ and for any fuzzy upper nbd M of $F(x_0)$, there exists a fuzzy open set V of Y such that $F(x_0) \leq V$ and $V\bar{q}(1_X \setminus M) \Rightarrow V \leq M$. Since F is fuzzy upper γ -continuous, there exists $U \in \gamma O(X, x_0)$ such that $U \subseteq F^+(V) \Rightarrow F(U) \leq V \leq M \Rightarrow U \subseteq F^+(M)$. Therefore, $x_0 \in U \subseteq F^+(M) \Rightarrow F^+(M)$ is a γ -nbd of x_0 .

Conversely, let for any $x_0 \in X$ and any fuzzy open set V of Y with $F(x_0) \leq V$, we have $V\overline{q}(1_X \setminus V)$. Therefore, V is a fuzzy upper nbd of $F(x_0)$. Then by hypothesis, $F^+(V)$ is a γ -nbd of x_0 . Then there exists $U \in \gamma O(X, x_0)$ such that $x_0 \in U \subseteq F^+(V) \Rightarrow F(U) \leq V \Rightarrow F$ is fuzzy upper γ -continuous.

Theorem 5.3. A fuzzy multifunction $F: X \to Y$ is fuzzy lower γ -continuous on X iff for each point $x_0 \in X$ and each fuzzy lower nbd M of $F(x_0)$, $F^-(M)$ is a γ -nbd of x_0 .

Proof. Let F be fuzzy lower γ -continuous on X. Then for any $x_0 \in X$ and for any fuzzy lower nbd M of $F(x_0)$, there exists a fuzzy open set V of Y such that $F(x_0)qV$ and $V\bar{q}(1_X\backslash M) \Rightarrow V \leq M$. Since F is fuzzy lower γ -continuous, there exists $U \in \gamma O(X, x_0)$ such that $U \subseteq F^-(V) \subseteq F^-(M)$. Therefore, $x_0 \in U \subseteq F^-(M) \Rightarrow F^-(M)$ is a γ -nbd of x_0 .

Conversely, let for any $x_0 \in X$ and any fuzzy open set V of Y with $F(x_0)qV$, we have $V\bar{q}(1_X\backslash V)$. Therefore, V is a fuzzy lower nbd of $F(x_0)$. Then by hypothesis, $F^-(V)$ is a γ -nbd of x_0 . Then there exists $U \in \gamma O(X, x_0)$ such that $x_0 \in U \subseteq F^-(V) \Rightarrow F$ is fuzzy lower γ -continuous.

Definition 5.4 [11]. A topological space (X, τ) is said to be γ-compact if for every covering of X by γ-open sets in X has a finite subcovering.

Theorem 5.5. Let $F: X \to Y$ be a fuzzy upper γ -continuous surjective multifunction and F(x) be a fuzzy compact set in Y for each $x \in X$. If X is γ -compact, then Y is fuzzy compact.

Proof. Let $\mathscr{L} = \{A_\alpha : \alpha \in \Lambda\}$ be a fuzzy open cover of Y. Now for each $x \in X$, F(x) is fuzzy compact in Y and so there is a finite subset Λ_x of Λ such that $F(x) \leq \bigcup \{A_\alpha : \alpha \in \Lambda_x\}$. Let $A_x = \bigcup \{A_\alpha : \alpha \in \Lambda_x\}$. Then $F(x) \leq A_x$ where A_x is a fuzzy open set of Y. Since F is fuzzy upper γ -continuous, there exists $U_x \in \gamma O(X, x)$ such that $U_x \subseteq F^+(A_x)$. Then $\mathscr{U} = \{U_x : x \in X\}$ is a cover of X by Y-open sets of X. Since X is Y-compact, there exists finitely many points X_1, X_2, \dots, X_n in X such that $X = \bigcup_{i=1}^n U_{X_i}$. As Y is surjective, Y is Y-compact.

Definition 5.6 [17]. An fts (Y, τ_Y) is said to be an FNC-space if every fuzzy regular open cover of Y has a finite subcover.

Remark 5.7. As every fuzzy regular open set is fuzzy open, we set the following theorem.

Theorem 5.8. Let $F: X \to Y$ be a fuzzy upper γ -continuous surjective multifunction and F(x) be a fuzzy compact set in Y for each $x \in X$. If X is γ -compact, then Y is FNC-space.

Theorem 5.9. When X is product related to Y, a fuzzy multifunction $F: X \to Y$ is fuzzy upper γ -continuous if its fuzzy graph multifunction $G_F: X \to X \times Y$ is fuzzy upper γ -continuous.

Proof. Let G_F be fuzzy upper γ -continuous. Let $x \in X$ and V be any fuzzy open set in Y such that $F(x) \leq V$. Then $G_F(x) \leq X \times V$ and $X \times V$ is easily seen to be open in $X \times Y$. By hypothesis, there exists $U \in \gamma O(X, x)$ such that $G_F(U) \leq X \times V$. Now for any $z \in U$ and for any $y \in Y$, $[F(z)](y) = [G_F(z)](z,y) \leq (X \times V)(z,y) = V(y)$, i.e., $[F(z)](y) \leq V(y)$, for all $y \in Y \Rightarrow F(z) \leq V$, for any $z \in U \Rightarrow F(U) \leq V \Rightarrow F$ is fuzzy upper γ -continuous.

Definition 5.10 [2]. The γ -frontier of a subset A of a topological space X, denoted by $\gamma Fr(A)$, is defined by $\gamma Fr(A) = \gamma clA \cap \gamma cl(X \setminus A) = \gamma clA \setminus \gamma intA$.

Theorem 5.11. Let $F: X \to Y$ be a fuzzy multifunction. Let $A = \{x \in X : F \text{ is not fuzzy upper } \gamma\text{-continuous at } x\}$, $B = \bigcup \{\gamma Fr(F^+(V)) : F(x) \le V \text{ and } V \text{ is fuzzy open in } Y\}$. Then A = B.

Proof. Let $x \in X$ be such that F is not fuzzy upper γ -continuous at x. Then there exists a fuzzy open set V of Y with $F(x) \leq V$ such that $U \not\subseteq F^+(V)$, for all $U \in \gamma O(X, x) \Rightarrow U \cap (X \setminus F^+(V)) \neq \emptyset$ \Rightarrow $x \in \gamma cl(X \setminus F^+(V)) = X \setminus \gamma int F^+(V)$ $\Rightarrow x \in \gamma int F^+(V)$, but $x \in F^+(V) \subseteq \gamma cl(F^+(V))$. Therefore, $x \in \gamma cl(F^+(V)) \setminus \gamma int(F^+(V)) = \gamma Fr(F^+(V))$.

Conversely, let $x \in X$ and V be a fuzzy open set of Y with $F(x) \leq V$ such that $x \in \gamma Fr(F^+(V))$. If possible, let F be fuzzy upper γ -continuous at X. Then there exists $U \in \gamma O(X, x)$ such that $U \subseteq F^+(V)$. Then $x \in U = \gamma int U \subseteq \gamma int (F^+(V)) \Rightarrow x \in \gamma int (F^+(V)) \Rightarrow x \notin \gamma Fr(F^+(V))$, a contradiction and hence F is not fuzzy upper γ -continuous at X.

Theorem 5.12. Let $F: X \to Y$ be a fuzzy multifunction. Let $A = \{x \in X : F \text{ is not fuzzy lower } \gamma\text{-continuous at } x\}$, $B = \bigcup \{\gamma Fr(F^-(V)) : F(x) \neq V \text{ and } V \text{ is fuzzy open set of } Y\}$. Then A = B.

Proof. Let $x \in X$ be such that F is not fuzzy lower γ -continuous at x. Then there exists a fuzzy open set V of Y with F(x)qV such that $U \subseteq F^-(V)$ i.e., $U \cap (X - (V)) \neq \emptyset$, for all $U \in \gamma O(X, x) \Rightarrow x \in \gamma cl(X \setminus F^-(V)) = X \setminus \gamma intF^-(V) \Rightarrow x \in \gamma intF^-(V)$, but $x \in F^-(V) \subseteq \gamma cl(F^-(V))$. Therefore, $x \in \gamma cl(F^-(V)) \setminus \gamma int(F^-(V)) = \gamma Fr(F^-(V))$.

Conversely, let $x \in X$ and V be a fuzzy open set of Y with F(x)qV such that $x \in \gamma Fr(F^-(V))$. If possible, let F be fuzzy lower γ -continuous at x. Then there exists $U \in \gamma O(X,x)$ such that $U \subseteq F^-(V)$. Then $x \in U = \gamma intU \subseteq \gamma int(F^-(V)) \Rightarrow x \in \gamma int(F^-(V)) \Rightarrow x \notin \gamma Fr(F^-(V))$, a contradiction and hence F is not fuzzy lower γ -continuous at x.

REFERENCES

- [1] Abd El-Monsef, M.E., El-Deeb, S.N. and Mahmoud, R.A.; β-open sets and β-continuous mappings, *Bull. Fac. Sci. Assiut Univ.* 12 (1983), 77 90.
- [2] Abd El-Monsef, M.E. and Nasef, A.A.; On multifunctions, *Chaos, Solitons and Fractals* 12 (2001), 2387-2394.
- [3] Andrijevič, D.; On b-open sets, Mat. Bech. 48 (1996), 59-64.
- [4] Azad, K.K.; On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, *J. Math. Anal. Appl.* 82 (1981), 14-32.
- [5] Bhattacharyya, Anjana and Mukherjee, M.N.; On fuzzy δ -almost continuous and δ^* -almost continuous functions, *J. Tripura Math. Soc.* 2 (2000), 45-57.
- [6] Bhattacharyya, Anjana; Concerning almost quasi continuous fuzzy multifunctions, *Universitatea Din Bac ău Studii Şi Cercet ări Ştiin ţifice*, Seria: Matematic ă Nr. 11 (2001), 35-48.
- [7] Bhattacharyya, Anjana: Upper and lower weakly quasi continuous fuzzy multifunctions, *Analele Universității Oradea, Fasc. Matematica*, Tom XX (2013), Issue No. 8, 5-17.
- [8] Bhattacharyya, Anjana: On upper and lower δ-precontinuous fuzzy multifunctions, *International Journal of Advancements in Research and Technology* Vol. 2, Issue 7 (2013), 328-333.
- [9] Bin Shahna, A.S.; On fuzzy strong semicontinuity and fuzzy precontinuity, *Fuzzy Sets and Systems* 44 (1991), 303-308.
- [10] Chang, C.L.; Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [11] El-Atik, A.A.; A study of some types of mappings on topological spaces, *Master's Thesis, Faculty of Science, Tanta University, Tanta, Egypt*, 1997.
- [12] Fath Alla, M.A.; On fuzzy topological spaces, Ph.D. Thesis, Assiut Univ., Sohag, Egypt (1984).
- [13] Ganguly, S. and Saha, S.; A note on δ-continuity and δ-connected sets in fuzzy set theory, *Simon Stevin* 62 (1988), 127-141.
- [14] Ganguly, S. and Saha, S.; A note on compactness in fuzzy setting, *Fuzzy Sets and Systems* 34 (1990), 117-124.
- [15] Levin, N.; Semiopen sets and semicontinuity in topological spaces, *Amer. Math. Monthly* 70 (1963), 36-41.

- [16] Mashhour, A.S., Abd El-Monsef, M.E. and El-Deeb, S.N.; On precontinuous and weak precontinuous mappings, *Proc. Phys. Soc. Egypt* 53 (1982), 47-53.
- [17] Mukherjee, M.N. and Ghosh, B.; On nearly compact and θ -rigid fuzzy sets in fuzzy topological spaces, *Fuzzy Sets and Systems* 43 (1991), 57-68.
- [18] Mukherjee, M.N. and Malakar, S.; On almost continuous and weakly continuous fuzzy multifunctions, *Fuzzy Sets and Systems* 41 (1991), 113-125.
- [19] Nanda, S.; Strongly compact fuzzy topological spaces, Fuzzy Sets and Systems 42 (1991), 259-262.
- [20] Njåstad, O.; On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.
- [21] Papageorgiou, N.S.; Fuzzy topology and fuzzy multifunctions, J. Math. Anal. Appl. 109 (1985), 397-425.
- [22] Pu, Pao Ming and Liu, Ying Ming; Fuzzy topology I, Neighbourhood structure of a fuzzy point and Moore-Smith convergence, *J. Math. Anal. Appl.* 76 (1980), 571-599.
- [23] Raychaudhuri, S.; Concerning δ-almost continuity and δ-preopen sets, *Bull. Inst. Math. Acad. Sinica* 21(4) (1993), 357-366.
- [24] Stone, M.H.; Applications of the theory of Boolean ring to general topology, TAMS 41 (1937), 375.
- [25] Veličko, N.V.; H-closed topological spaces, Amer. Math. Soc. Transl. 78 (1968), 103-118.
- [26] Zadeh, L.A.; Fuzzy sets, Inform. Control 8 (1965), 338-353.