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ABSTRACT

For parameter estimations, we have developed a extended kalman filter(EKF)#and unscented)kalman
filter(UKF) for linear as well as non-linear spacecraft systems."We“have described the differences of two
approaches mathematical equation for modeling of the system value of mean square errorperror covariance
and For state estimation of satellite, two different type of filtersghastbeen described i.e, extended kalman

standard deviation are proposed to be used for determining the accuracy of implemented method.

KEYWORDS: Filtering Algorithm, Non-linear System, Strong Tragking, State Estimation, Unscented

kalman Filter.
I. INTRODUCTION

Satellite pictures are used for many applications such as reconnaissance and geographic information systems.
So, requirement of operation and design-of satellite systemS have become more important and greater system
reliability duringd operation is ‘required. All*“the ‘practical systems posseses some degree of non-
linearityDepending on the type of process and th€ operating region of the process, some processes can be
approximated with a linear, model and KF can be used for state estimation. For the non-linear systems, under the
assumptions of Gaussian‘noise, the extended kalman filter (EKF) is frequently used for estimating the non-
measurable state variables through the processing of input and output sequence. The EKF is typically based on
linearization“of the system dynamics using the first order taylorexpansion. There are many uncertainties to deal
with process controly model uncertainties, measurement uncertainties and uncertainties in terms of different
noise sources acting on the system. The linear approximation of the system at a given time instant may introduce
errors in the state which may lead the state to diverge over a time. In other words the linear approximation may
not be appropriate for some systems. In order to overcome the drawbacks of the EKF ,other non-linear state
estimators have been developed such as unscented kalman filter(UKF) or the higher order EKFs.The state
distribution in UKF is approximated by Gaussian random variables ,which is represented by using a minimal set
of suitably chosen weighted sample points. these sigma points are propagated through the true non-linear
system, thus generating the posterior sigmapoint set ,and the posterior statictics are calculated. the sample points

progressively converge to the true mean and the covariance of the guassian random variables.
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Henry D. Travis performed the attitude determination task using a linear Kalman Filter alongwith star tracker
measurements on satellites. The filter used a linear, constant coefficient statematrix with the optimal control law
to provide negative feedback control. The control law usedinformation developed through the equations of
motions of the spacecraft in the orbit. Thesystem assumed the position and motion of the satellite as linear.
When the Kalman Filter algorithm was applied to the satellite systems, the algorithm described good results in
terms oferror covariance, mean square error and standard deviation The Extended Kalman Filter provided an
improvisation in calculating the estimation of the state of a non-linear system over a Linear Kalman Filter For
improving and implementing the method, the various study steps have been described below. Firstly, Analysis
of various orbital parameters that are intended for defining a satellite in any orbit.Secondly, Analysis of the
three axes symmetry of the satellite body that define the attitude of the satellite in the orbit. Thirdly,
Development of mathematical equations for modeling of the system and applying it for parameter estimation.
The value of mean square error, error covariance and standard deviation are preposed to befused*for determining

the accuracy of the implemented method. Lastly, Simulation of the abowe.

I1.KALMAN FILTER MECHANICS

In estimating the state of discrete-time controlled process governed-by-the Tinear stochasticdifference equation,

X T A X1t B Uit Wit oo 2.1

The Kalman filter deals with the general problem with a measurement that is,

Zi=H X Voo 2.2

The process and measurement noise “are represented by the random variables wy sqvirespectively and are

independent of each’ other (assumed), withsiormal‘probability distributions

PW) ~ N, Q). 2.3
P(V) 2N, R)..eve L 2.4

In the differenee equation A is an hxn matrix which relates the previous time state at step k-1to the current state
at step k whereasB is an rixI'which relates the state x to the optional controlinput. And in the measurement
equation H is an mxn matrix which relates the state to the measurement z,.

The Kalman filter uses'a form of feedback control in estimating a process. The filter acquires feedback as
(noisy) measurements by first estimating the state of the process at some time. As a result, the Kalman filter
equations for the process diverge into two groups: the time update equations and the measurement update
equation.

The time update equations accountfor driving the present state and error covariance estimates ahead in time for
obtaining the pastestimates for the next time step. The measurement update equations account for the feedback.
For assimilating a fresh, new measurement into the past estimate for obtaining a superiorsubsequent estimate.
One can also thought the time update equations as predictor equations,and the measurement update equations as

corrector equations. The specific equations for the time and measurement updates are presented.,
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Kalman filter time update equations:

XNEEAXNATFB Uk 2.5

Pe-= APKAT+ Qo 2.6

Kalman filter measurements update equations:

KK=P-H (HP-HT+R) ., 2.7

XAEXMN +FKK (Z- H XA)

Pr=(1- KKH) P 2.9

The computation of the Kalman gain KK. is the initial step during the measurement update compute Subsequent
to the above step is to measure the process for obtaining the measurement z, and then generating an a
posteriori state estimate by assimilating the measurement. The process is copéluded by obtaining an a posteriori
error covariance estimate. This process is reiterated after every time and measurementfupdate paif, with the
previous “aposteriori” estimates for predicting the new “a priori” estimates. As a result'ef this recursive

nature of the Kalman Filter it makes practical implementations glot more feasible and is one ofthe very pleasing
attributes of the filter. The KF in its earliest formulation can{be seen as asequential least-squares approach for
estimating longitudinal factor scores when no prior information is available. In"otheninstances, the KF is often
used in conjunction with amaximum likelihood proeedure termed prediction error 'decomposition to estimate
parametersfor dynamic and time series modelsf"Central to the prediction algorithm’of the KF is a state space
model that specifies the dynamic and measurement relations among latent states and

manifest observations.

Measurement updateN*“Correct”)

Compute the Kalman Gain

KK = Pyx- H' (HP-H™+ R)™*

Update estimate with measurement zx
M= XM +KK (Zk- H XM-)

Update the error covariance

Pc=(1- KKH) Py-

Time update (“Predict”)
Project the state ahead
XNe= A XNt B Uy

Project the error covariance ahead

Pr-=APA™+Q

4N /\

IS ERROR
<MIN VALUE?

Initial estimates for
XM18Pk-1

ERROR VALUE STOP
Figure 2.2- A complete picture of the operation of the Kalman filter
I11. UNSCENTED KALMAN FILTER ALGORITHM
173|Page

WWW.ijarse.com




International Journal of Advance Research In Science And Engineering http://www.ijarse.com
IJARSE, Vol. No.3, Issue No.10, October 2014 ISSN-2319-8354(E)
The UKF was founded on the intuition that it is easier to approximate a probability distribution that it is to
approximate an arbitrary nonlinear function or transformation. The sigma points are chosen so that their mean
and covariance to be exactly x%.,and p,... Each sigma point is thenpropagated through the nonlinearity yielding
in the end a cloud of transformed points. The new estimated mean and covariance are then computed based on
their statistics. This process is called unscented transformation. The unscented transformation is a method for
calculating the statistics of a random variable which undergoes a nonlinear transformation.

Consider the following nonlinear system, described by the difference equation and the observation model with
additive noise:

Xk = T X1t Wit oo 3.1

Zi=H Xkt Vi 3.2

The initial state X, is a random vector with known mean,
o= E[Xo] coveveinieie 3.3

And covariance

Po=E[(x0-Ho) + (o -Ho) Teeeeeeeeeeeeeiiiiiie, 3.4

In the case of non-additive process and measurement noise, the unscented transformation
scheme is applied to the augmented state:

Xkaug = [XkTWk_lTVkT] ................................... 35

3.1.1 Set Selection of Sigma Points:
Let x,.1be a set of 2n + 1 sigma points (where n pace) and their
associated weights:

Xic1 = {( ¥y , W) /j=0

And [ {n/(1-W®)}? P, ] is the row or column of the matrix. W controls the position of sigma
points. W®> 0 points tend to move further from the origin, W< 0 points tend to be closer to

the origin.

IV. STRONG TRACKING AUGMENTED UNSCENTED KALMAN FILTER (ST-AUKF)

The traditional UKF algorithm requires the terms that the system noise must be the white Gaussian noise which

do not participate in most of the nonlinear system. These requests limit the usage of the traditional UKF
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algorithm. Merwe proposed, augmented UKF (AUKF) algorithm to solve the problem of filtering the nonlinear
system with the non-additive white Gaussian noise[26].The AUKF algorithm uses the process noise and
measurement noise as the system state to sampling the Sigma points which resolve the problem above. AUKF
algorithm uses the minimum covariance estimation principle as the basic theory. It requires that, system model
and the noise statistics should be known precise, otherwise the state estimation will be inaccurate and filter
outputs will be divergent. The accuracy of MEMS sensors will decrease fast while the platform moves
speediness, which result in the filter losses the tracking of the states. Zhou Donghua proposed the Strong
Tracking Filter (STF) [27]. STF constrains the innovation outputs of filter to satisfy the orthogonality principle

by the adaptive fading factor to make the filter has the robustness performance of un in of the system model.

4.1 Strong Tracking Filter Theory
Considering the discrete nonlinear system as follows.

XK+1 = Qk+1/K X Kkt W K e e enneneeneneeneaeeaneneaeeaneneenenneneennns

ZK+1 = HK+1 XK+1 + VK+1 ..............................................

E(Vk) =0, Cov (Vi ,V;")= Rk g
Cov (Wi ,V;) =0 i

Where A.1> 1 denotes the adaptive fading factor. Assume that the theoretical output innovation is €= Zy.1+

ZKH,.(, then the adaptive fading factor Ax.; ¢ s calculation follows the algorithm:

1 = ko, =1
{1, <L 47
h=1tr [NK+1] /tr [MK+1] ........................................... 4.8
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Ni+1 = Va1 - Hia1 Qk HK+1T' | O P 4.9
MK+1 = HK+1 PK+1/K PK ([)K+1T HK+1T ............................... 4.10

Where arithmetic operators tr (.) represents the trace of a matrix.P(')K+1,K denotes the prediction of the error

covariance without the adaptive fading factor. Obviously:

P(I)K+1/K= Pk+1,K PK (PK+1'KT + Qk ...................................................... 4.11
Vi.1denotes the covariance matrix of the real output innovation at the k +1th samplipg,instant, which estimated

by the following formulation:

Vi ={aa' ,K=0
(P Vit aciacss T(AFP) T KS0iuueeeeeeeeeerrrineeeeeerenneeeeeeeeediin.e 4.12

0 < p <1 denotes the adaptive factor, usually assume p = 0.95!
The theory of the STF shows that the essence of the STF is to constrain the output innoyation to satisfy the
orthogonally principle by the adaptive fading factor.

V. NUMERICAL SIMULATION

In this section, we describe numerical simulation“used, to verify the performance of the proposed attitude
estimation algorithm based on'streng tracking augmentediunseented kalman filter (ST-AUKF). AUKF algorithm
uses the minimum covariance estimation principle as the basie theory. It requires that the system model and the
noise statistics should be known precise, otherwise the, state estimation will be inaccurate and filter outputs will
be divergent. STF eonstrains the innovation outputs of the filter to satisfy the orthogonality principle by the
adaptive fading factor te, make the filter has the robustness performance of uncertain of the system model. The
values @of error in terms ofymean square_esror, error covariance and standard deviation have been given in
Table1,

First fig.1 shows the orbital parameters of a microsatellite. For simulation of attitude determination using Strong
Tracking Augmented Unscented Kalman Filter the orbital parameters of microsatellite have been processed
through MATLAB<7.6:0.The orbit of the satellite is a near circular sun-synchronous polar orbit with an
eccentricity 0f0.001075. The orbit is retrograde, meaning that the satellite moves from east to west, with
aninclination of 98.540. The semi-major axis of the orbit is 7071 km and relates to an orbitalheight of
approximately 792 km. The satellite has a mean motion of 14.322 revolutions per dayin this orbit with an orbit
period of 6012 seconds.

Second fig.2 shows the attitude error of a satellite attitude measurements. This is an error which signifies the
error in the pointing direction of the satellite body axis when the satellite’s angular velocity changes.Figure.2
shows the pointing error of the roll axis of the satellite body. Pointing error of roll axis signifies the movement
of satellite’s antenna north and south. The dip and rise in the portion of the time from 24s to 30s signifies a large

value of error as a result of change inangular velocity of the satellite.
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Third fig.3 shows the pointing error of the yaw axis of the satellite body. Pointing error ofnick/yaw axis
signifies the rotation of satellite’s antenna. The dip and rise in the portion of thetime from 24s to 30s signifies a
large value of error as a result of change in angular velocity ofthe satellite.

Fourth fig.4 shows the pointing error of the pitch axes of the satellite body. Pointing error ofpitch axis signifies
the movement of satellite’s antenna east and west. Here also the dip and risein the portion of the time from 24s
to 30s signifies a large value of error as a result of change inangular velocity of the satellite.

Fifth fig.5 shows the velocity error of the satellite body. This is an error which signifies the change in the
velocity of satellite’s body axis when satellite’s angular velocity changes.it shows an error which signifies the
change in the velocity of satellite’s body axis when satellite’s angular velocity changest

Sixth fig.6 shows the error in the rate of change of pitch axis with respect to time. Velocity error of pitch axis
signifies the change in the velocity of satellite’s antenna in east-westdirection with respeet to change in the
angular velocity of the satellite.

Seventh fig.7 shows the error in the rate of change of yaw axis withrespect to time. Melocity errorof yaw axis
signifies the change in the velocity of satellite’s body rotationgwith respeet tochange in the angulardvelocity of
the satellite.

Eight fig.8 shows the position error of the satellite body. This iS'an error which signifies the change in the
position of the satellite body axis when the satellite_changes its position.it is the error in the change of direction
of roll axis. Position error of roll axis signifiesfthe displacement of satellite’s antedna in north-south direction
when the satellite is subjected to a change in itSiangular velocity.

Ninth fig.9 shows the error in the change of direction offrollyaxis.Position error of roll axissignifies the
displacement of satellite’s antenna in north-south“direetion when the“satellite issubjected to a change in its
angular velocity.

Tenth fig.10 shows the error in the change of direction of yaw axis. Position error of yaw axissignifies the
rotation of satellite’s antenna whenithe satellite is Subjectedto a change in itsangular velocity.

Based on the above analysis of the pointing error of\the satellite body obtained through thecomputer simulation

of the implemented method the Table'No.1 describes the various errorparameters that have been obtained.
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Parameter Ref7 Ref8 Ref9 Observed value

Mean squareerror 1.2780,1.1091 4.04104,.04034,.03978 | 0.18.0.02 .0148,.0180,.0125,.0101
Error covariance |  ........ | ... .50 .0163,.0201,.0149,.0121
Standard deviation |  ........ | ......... .0115,.0161,.0109,.0091

Table 1-Parameter Values Obtained Through Simulation

VI.CONCLUSION

Mean square‘rror, error covariance and standard deviation have been found as given in Table 1.The value of
mean square error lies'in the range from\0.01 to 0.018,value of error covariance lies in the range from 0.012 to
0.02¢and the values of standard,deviation lies in the range from 0.009 to 0.016.0n the basis of above obtained
results it'canibe seen that the tracking ability of the implemented method has been better as compared to the
result given in{[1]3[2]and[3]dmterms of accuracy and speed of convergence.however there are some portions

in which certain dips and rises in the curve can be seen.The portion of time from 24s to 30s, the crests and 57
troughs signify a large value of error due to a change in the angular velocity and position of the satellite as a

result of circular orbit of the satellite.
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