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ABSTRACT 

For parameter estimations, we have developed a extended kalman filter(EKF) and unscented kalman 

filter(UKF) for linear as well as non-linear spacecraft systems. We have described the differences of two 

approaches mathematical equation for modeling of the system value of mean square error, error covariance 

and For state estimation of satellite, two different type of filters has been described i.e, extended kalman 

standard deviation are proposed to be used for determining the accuracy of implemented method. 

KEYWORDS: Filtering Algorithm, Non-Linear System, Strong Tracking, State Estimation, Unscented 

kalman Filter. 

I. INTRODUCTION 

Satellite pictures are used for many applications such as reconnaissance and geographic information systems. 

So, requirement of operation and design of satellite systems have become more important and greater system 

reliability during operation is required. All the practical systems posseses some degree of non-

linearityDepending on the type of process and the operating region of the process, some processes can be 

approximated with a linear model and KF can be used for state estimation. For the non-linear systems, under the 

assumptions of Gaussian noise, the extended kalman filter (EKF) is frequently used for estimating the non-

measurable state variables through the processing of input and output sequence. The EKF is typically based on 

linearization of the system dynamics using the first order taylorexpansion. There are many uncertainties to deal 

with process control; model uncertainties, measurement uncertainties and uncertainties in terms of different 

noise sources acting on the system. The linear approximation of the system at a given time instant may introduce 

errors in the state which may lead the state to diverge over a time. In other words the linear approximation may 

not be appropriate for some systems. In order to overcome the drawbacks of the EKF ,other non-linear state 

estimators have been developed such as unscented kalman filter(UKF) or the higher order EKFs.The state 

distribution in UKF is approximated by Gaussian random variables ,which is represented by using a minimal set 

of suitably chosen weighted sample points. these sigma points are propagated through the true non-linear 

system, thus generating the posterior sigmapoint set ,and the posterior statictics are calculated. the sample points 

progressively converge to the true mean and the covariance of the guassian random variables. 
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Henry D. Travis performed the attitude determination task using a linear Kalman Filter alongwith star tracker 

measurements on satellites. The filter used a linear, constant coefficient statematrix with the optimal control law 

to provide negative feedback control. The control law usedinformation developed through the equations of 

motions of the spacecraft in the orbit. Thesystem assumed the position and motion of the satellite as linear. 

When the Kalman Filter algorithm was applied to the satellite systems, the algorithm described good results in 

terms oferror covariance, mean square error and standard deviation The Extended Kalman Filter provided an 

improvisation in calculating the estimation of the state of a non-linear system over a Linear Kalman Filter For 

improving and implementing the method, the various study steps have been described below. Firstly, Analysis 

of various orbital parameters that are intended for defining a satellite in any orbit. Secondly, Analysis of the 

three axes symmetry of the satellite body that define the attitude of the satellite in the orbit. Thirdly, 

Development of mathematical equations for modeling of the system and applying it for parameter estimation. 

The value of mean square error, error covariance and standard deviation are proposed to be used for determining 

the accuracy of the implemented method. Lastly, Simulation of the above. 

 

II.KALMAN FILTER MECHANICS 

 

In estimating the state of  discrete-time controlled process governed by the linear stochasticdifference equation, 

xk= A xk-1+ B uk-1+ wk-1…………….……………2.1 

 

The Kalman filter deals with the general problem with a measurement that is, 

 

Zk = H xk + vk……………………………….2.2 

 

The process and measurement noise are represented by the random variables wk andvkrespectively and are 

independent of each other (assumed), with normal probability distributions 

 

p(w) ~ N(0, Q)…………………..……………….2.3 

p(v) ~ N(0, R)…………………………………….2.4 

 

In the difference equation A is an n×n matrix which relates the previous time state at step k-1to the current state 

at step k whereas B is an n×l which relates the state x to the optional controlinput. And in the measurement 

equation H is an m×n matrix which relates the state to the measurement zk. 

The Kalman filter uses a form of feedback control in estimating a process. The filter acquires feedback as 

(noisy) measurements by first estimating the state of the process at some time. As a result, the Kalman filter 

equations for the process diverge into two groups: the time update equations and the measurement update 

equation. 

The time update equations accountfor driving the present state and error covariance estimates ahead in time for 

obtaining the pastestimates for the next time step. The measurement update equations account for the feedback. 

For assimilating a fresh, new measurement into the past estimate for obtaining a superiorsubsequent estimate. 

One can also thought the time update equations as predictor equations,and the measurement update equations as 

corrector equations.The specific equations for the time and measurement updates are presented., 
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Kalman filter time update equations: 

x^k-= A x^k-1+ B uk-1………………………….2.5 

PK-= A PK-1A
T
+ Q…………………………....2.6 

Kalman filter measurements update equations: 

KK = PK- H
T 

(HPK-H
T 

+ R)
-1

……………………….2.7 

X^K=X^K- +KK (zK- H X^K-)………………………… 

PK=(1- KKH)  PK-……...………………………2.9 

 

The computation of the Kalman gain KK. is the initial step during the measurement update compute Subsequent 

to the above step is to measure the process for obtaining the measurement zK , and then generating an a 

posteriori state estimate by assimilating the measurement. The process is concluded by obtaining an a posteriori 

error covariance estimate. This process is reiterated after every time and measurement update pair with the 

previous “aposteriori” estimates for predicting the new “a priori” estimates. As a result of this recursive 

nature of the Kalman Filter it makes practical implementations a lot more feasible and is one ofthe very pleasing 

attributes of the filter. The KF in its earliest formulation can be seen as asequential least-squares approach for 

estimating longitudinal factor scores when no prior information is available. In other instances, the KF is often 

used in conjunction with amaximum likelihood procedure termed prediction error decomposition to estimate 

parametersfor dynamic and time series models. Central to the prediction algorithm of the KF is a state space 

model that specifies the dynamic and measurement relations among latent states and 

manifest observations. 

 

 

 

 

 

 

 

 

 

Figure 2.2- A complete picture of the operation of the Kalman filter 

III. UNSCENTED KALMAN FILTER ALGORITHM 
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The UKF was founded on the intuition that it is easier to approximate a probability distribution that it is to 

approximate an arbitrary nonlinear function or transformation. The sigma points are chosen so that their mean 

and covariance to be exactly  x
a
k-1 and pk-1. Each sigma point is thenpropagated through the nonlinearity yielding 

in the end a cloud of transformed points. The new estimated mean and covariance are then computed based on 

their statistics. This process is called unscented transformation. The unscented transformation is a method for 

calculating the statistics of a random variable which undergoes a nonlinear transformation. 

Consider the following nonlinear system, described by the difference equation and the observation model with 

additive noise: 

xk= f xk-1+ wk-1…………….……………3.1 

zk = H xk + vk……………………………….3.2 

The initial state x0 is a random vector with  known mean, 

μ0= E [x0] …………………………………..3.3 

And covariance 

P0=E[(x0-µ0) + (x0 -µ0)
T
]………………………..3.4 

In the case of non-additive process and measurement noise, the unscented transformation 

scheme is applied to the augmented state: 

xk
aug

 = [xk
T
wk-1

T
vk

T
]……………………………..3.5 

 

3.1.1 Set Selection of Sigma Points: 

Let xk-1be a set of 2n + 1 sigma points (where n is the dimension of the state space) and their 

associated weights: 

Xk-1 = {( x
j
k-1 , W

j
) / j= 0………..2n} …………………..3.6 

x
0

k-1  = x
a
k-1 ……………………………………..3.7 

 

-1 < W
0
>1 

 

X
i
k-1 = x

a
k-1  + [{n/(1-W

0
)}

1/2
 Pk-1 ]i     , for all i = 1 to n………………..3.8 

X
i+n

k-1 = x
a
k-1  - [ {n/(1-W

0
)}

1/2
 Pk-1 ]i  , for all i = 1 to n…………………3.9

 

W
j
=  (1- W

0
) / (2n)  ,  for all j = 1 to 2n ……….……………3.10 

 

where the weights must obey the condition: 

Σ
2n

j=0W
j
= 1 , …………………..………….3.11 

And  [ {n/(1-W
0
)}

1/2
 Pk-1 ]i ,is the row or column of the matrix. W

0
controls the position of sigma 

points. W
0
≥ 0 points tend to move further from the origin, W

0
≤ 0 points tend to be closer to 

the origin. 

 

IV.  STRONG TRACKING AUGMENTED UNSCENTED KALMAN FILTER (ST-AUKF) 

 

The traditional UKF algorithm requires the terms that the system noise must be the white Gaussian noise which 

do not participate in most of the nonlinear system. These requests limit the usage of the traditional UKF 
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algorithm. Merwe proposed, augmented UKF (AUKF) algorithm to solve the problem of filtering the nonlinear 

system with the non-additive white Gaussian noise[26].The AUKF algorithm uses the process noise and 

measurement noise as the system state to sampling the Sigma points which resolve the problem above. AUKF 

algorithm uses the minimum covariance estimation principle as the basic theory. It requires that, system model 

and the noise statistics should be known precise, otherwise the state estimation will be inaccurate and filter 

outputs will be divergent. The accuracy of MEMS sensors will decrease fast while the platform moves 

speediness, which result in the filter losses the tracking of the states. Zhou Donghua proposed the Strong 

Tracking Filter (STF) [27]. STF constrains the innovation outputs of filter to satisfy the orthogonality principle 

by the adaptive fading factor to make the filter has the robustness performance of uncertain of the system model. 

 

4.1 Strong Tracking Filter Theory 

 

Considering the discrete nonlinear system as follows. 

 

XK+1 = φK+1/K X K + W K……………………………………………….4.1 

ZK+1  =  HK+1 XK+1 + VK+1…………………………………………4.2 

 

Where  XKand ZK, denote the state vector and measurement vector, respectively; U K, denotes the input vector; 

ΦK+1/Kand HK+1 denote the states transfer matrix and the measurement matrix, respectively; W KandVKare 

independent white Gaussian noise with the statistics as follows: 

 

E(W K) = 0, Cov (W K , Wj
T
) = Q K ρk,j………………………..4.3 

E(VK) = 0, Cov (VK ,Vj
T
)= RK ρk,j…………..……………..4.4 

Cov (WK ,Vj
T
) = 0 …………..……………………………………….4.5 

 

Where QKand RKare positive definite symmetry matrix; the initial stateX0 is independent with WK and VK with 

the Gaussian distribution. 

The STF is similar with the traditional Kalman filter, merely using the adaptive fading factor to modify the 

prediction of the error covariance to maintain the innovation to satisfy the orthogonality principle. The process 

of prediction of the error covariance with the adaptive fading factor is: 

 

                          Pk+1/k = λk+1φk+1,kPk φk+1,k
T 

+ QK…………………………………4.6 

 

Where λk+1≥ 1 denotes the adaptive fading factor. Assume that the theoretical output innovation is Єk+1= ZK+1+ 

ŽK+1,k, then the adaptive fading factor   λK+1 „ s calculation follows the algorithm: 

 

λK+1  = λ0 ,                                  λ0 ≥1 

{   1,                      λ0<1………………………………………………4.7 

 

λ0 = tr [NK+1] / tr [MK+1]…………………………………….4.8 
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                          NK+1 = VK+1 - HK+1 QK HK+1
T 

- RK+1…………………………..4.9 

MK+1 = HK+1 φK+1/K PK φK+1
T
 HK+1

T
………………………….4.10 

 

Where arithmetic operators tr (.) represents the trace of a matrix.
P(l)

K+1/K denotes the prediction of the error 

covariance without the adaptive fading factor. Obviously: 

 

P
(l)

K+1/K = φK+1,K PK φK+1,K
T 

+ Qk………………………………………………4.11 

VK+1denotes the covariance matrix of the real output innovation at the k +1th sampling instant, which estimated 

by the following formulation: 

 

VK+1 = {ϵ1 ϵ1
T 

,K=0 

{ ρ VK + ϵK+1 ϵK+1
T 

/ (1+ ρ)        , K≥0……………………………………….4.12 

 

0 < ρ ≤ 1 denotes the adaptive factor, usually assume ρ = 0.95. 

The theory of the STF shows that the essence of the STF is to constrain the output innovation to satisfy the 

orthogonally principle by the adaptive fading factor. 

 

V. NUMERICAL SIMULATION 

 

In this section, we describe numerical simulation used to verify the performance of the proposed attitude 

estimation algorithm based on strong tracking augmented unscented kalman filter (ST-AUKF). AUKF algorithm 

uses the minimum covariance estimation principle as the basic theory. It requires that the system model and the 

noise statistics should be known precise, otherwise the state estimation will be inaccurate and filter outputs will 

be divergent. STF constrains the innovation outputs of the filter to satisfy the orthogonality principle by the 

adaptive fading factor to make the filter has the robustness performance of uncertain of the system model. The 

values of error in terms of mean square error, error covariance and standard deviation have been given in 

Table.1. 

First fig.1 shows the orbital parameters of a microsatellite. For simulation of attitude determination using Strong 

Tracking Augmented Unscented Kalman Filter the orbital parameters of microsatellite have been processed 

through MATLAB 7.6.0.The orbit of the satellite is a near circular sun-synchronous polar orbit with an 

eccentricity of0.001075. The orbit is retrograde, meaning that the satellite moves from east to west, with 

aninclination of 98.540. The semi-major axis of the orbit is 7071 km and relates to an orbitalheight of 

approximately 792 km. The satellite has a mean motion of 14.322 revolutions per dayin this orbit with an orbit 

period of 6012 seconds. 

Second fig.2 shows the attitude error of a satellite attitude measurements. This is an error which signifies the 

error in the pointing direction of the satellite body axis when the satellite’s angular velocity changes.Figure.2 

shows the pointing error of the roll axis of the satellite body. Pointing error of roll axis signifies the movement 

of satellite’s antenna north and south. The dip and rise in the portion of the time from 24s to 30s signifies a large 

value of error as a result of change inangular velocity of the satellite. 
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Third fig.3 shows the pointing error of the yaw axis of the satellite body. Pointing error ofnick/yaw axis 

signifies the rotation of satellite’s antenna. The dip and rise in the portion of thetime from 24s to 30s signifies a 

large value of error as a result of change in angular velocity ofthe satellite. 

Fourth fig.4 shows the pointing error of the pitch axes of the satellite body. Pointing error ofpitch axis signifies 

the movement of satellite’s antenna east and west. Here also the dip and risein the portion of the time from 24s 

to 30s signifies a large value of error as a result of change inangular velocity of the satellite. 

Fifth fig.5 shows the velocity error of the satellite body. This is an error which signifies the change in the 

velocity of satellite’s body axis when satellite’s angular velocity changes.it shows an error which signifies the 

change in the velocity of satellite’s body axis when satellite’s angular velocity changes. 

Sixth fig.6 shows the error in the rate of change of pitch axis with respect to time. Velocity error of pitch axis 

signifies the change in the velocity of satellite’s antenna in east-westdirection with respect to change in the 

angular velocity of the satellite.  

Seventh fig.7 shows the error in the rate of change of yaw axis with respect to time. Velocity errorof yaw axis 

signifies the change in the velocity of satellite’s body rotation with respect tochange in the angular velocity of 

the satellite. 

Eight fig.8 shows the position error of the satellite body. This is an error which signifies the change in the 

position of the satellite body axis when the satellite changes its position.it is the error in the change of direction 

of roll axis. Position error of roll axis signifies the displacement of satellite’s antenna in north-south direction 

when the satellite is subjected to a change in its angular velocity. 

Ninth fig.9 shows the error in the change of direction of roll axis.Position error of roll axissignifies the 

displacement of satellite’s antenna in north-south direction when the satellite issubjected to a change in its 

angular velocity. 

Tenth fig.10 shows the error in the change of direction of yaw axis. Position error of yaw axissignifies the 

rotation of satellite’s antenna when the satellite is subjected to a change in itsangular velocity. 

Based on the above analysis of the pointing error of the satellite body obtained through thecomputer simulation 

of the implemented method the Table No.1 describes the various errorparameters that have been obtained. 

Fig2-Roll 

Error
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Fig3-Nick/Yaw Error 

 

Fig4- Pitch  Error 

Fig5- North Velocity  Error 

 

Fig6- East Velocity  Error 

 

Fig7- Downward Velocity  Error 
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Fig8- North Position  Error 

 

Fig9- East Position  Error  

 

Parameter 

 

Ref7 Ref8 Ref9 Observed value 

Mean squareerror 1.2780,1.1091 .04104,.04034,.03978 0.18 , 0.02 .0148,.0180,.0125,.0101 

Error covariance       …….. ………  .0163,.0201,.0149,.0121 

Standard deviation       …….. ………  .0115,.0161,.0109 ,.0091 

Table 1-Parameter Values Obtained Through Simulation 

 

VI.CONCLUSION 

Mean square error, error covariance and standard deviation have been found as given in Table 1.The value of 

mean square error lies in the range from 0.01 to 0.018,value of error covariance lies in the range from 0.012 to 

0.02 and the values of standard deviation lies in the range from 0.009 to 0.016.On the basis of above obtained 

results it can be seen that the tracking ability of the implemented method has been better as compared to the 

result given in [1],[2]and[3] in terms of accuracy and speed of convergence.however there are some portions 

in which certain dips and rises in the curve can be seen.The portion of time from 24s to 30s, the crests and 57 

troughs signify a large value of error due to a change in the angular velocity and position of the satellite as a 

result of circular orbit of the satellite. 
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