International Journal of Advance Research In Science And Engineering http://www.ijarse.com
IJARSE, Vol. No.3, Issue No.11, November 2014 ISSN-2319-8354(E)

CODE COMPRESSION ALGORITHM FOR HIGH
PERFORMANCE MICROPROCESSOR BY USING
VERILOG

K.J. Satyanarayana’, B.Panda’,P.Aditya’

! PG Student, 2Asst. Prof, *HOD
Department of Electronics and Communication Engineering,51TAS, Piridi (India)

ABSTRACT

Modern processors use two or more levels of cache memories 40 bridge the rising disparity between processor
and memory speeds. Microprocessor designers have been torn between tight constraints on thedamount of on-
chip cache memory and the high latency of off-chip memaryjssuch as dynamic, random access memory.
Accessing off-chip memory generally takes an order of magnitude more time than aceessing on-chip cache, and
two orders of magnitude more time than executing an instruction. Compression can improve cache performance
by increasing effective cache capacity amd eliminating, misses. Computer systems and micro architecture
researchers have proposed using hardware“data compression. units within the memory hierarchies of
microprocessors in order to improve performance; energy efficiency,“and functionality. However, most past
work, and all work on cache cempression, has made unsubstantiated assumptions about the performance, power
consumption, and area overheads of ‘the _proposed compression algorithms and hardware .In this project a
lossless compression algorithm that has been designed for fast on-line data compression, and cache compression
in particular is proposed. The algorithmdias a numberof novel features tailored for this application, including
combining pairs of compressed linesiinto one cache line and allowing parallel compression of multiple words
while using a single dictionary and without degradation in compression ratio. The algorithm is proposed to a
register transfer level hardware, design, permitting performance, power consumption, and area estimation. The
cache compression is evaluated using full-system simulation and a range of benchmarks. It can be shown that
compression can improve perfermance for memory-intensive commercial workloads.

Index Terms— Cache Compression, Effective System-Wide Compression Ratio, Hardware

Implementation, Pair Matching, Parallel Compression

I. INTRODUCTION

More time is essential to access off-chip memory time required to access generally takes an accessing on-chip
cache. Hence to improve memory system efficiency cache hierarchies is been incorporated on chip, but it is
constrained by die area and cost. Cache compression is one such technique; data in last-level on chip caches,

e.g., L2 resulting in larger usable caches. However past work did not demonstrate whether the proposed

230 | Page
WWw.ijarse.com

International Journal of Advance Research In Science And Engineering http://www.ijarse.com
IJARSE, Vol. No.3, Issue No.11, November 2014 ISSN-2319-8354(E)

compression and decompression hardware is appropriate for cache compression, considering the performance,
area and power consumption requirements. This paper addresses the increasingly important issue of controlling
off-chip communication in computer systems in order to maintain good performance and energy efficiency.

Cache compression presents several challenges. First, decompression and compression must be extremely fast: a
significant increase in cache hit latency will overwhelm the advantages of reduced cache miss rate. This requires
an efficient on-chip decompression hardware implementation. Second, the hardware should occupy little area
compared to the corresponding decrease in the physical size of the cache, and should not substantially increase
the total chip power consumption. Third, the algorithm should lossless compress small blocks, e.g., 64-byte
cache lines, while maintaining a good compression ratio (throughout this paper we use,the term compression
ratio to denote the ratio of the compressed data size over the original data size). Conventional compression
algorithm quality metrics, such as block compression ratio, are not appfopriate for judging quality in this
domain. Instead, one must consider the effective system wide compression ratio AT hisfpaper will pgint out a
number of other relevant quality metrics for cache compression algorithms, some“ef which are new. Finally,
cache compression should not increase power consumption sdbstantially. The above requitements prevent the
use of high-overhead compression algorithms such as the PRM, family of-algoerithms [4] or Burrows-Wheeler

transforms [5]. A faster and lower-overhead technique is required:

Il. RELATED WORK AND CONTRIBUTIONS

Researchers have assumed the use of general purpose main._memory compression hardware for cache
compression. IBM’s MXT (Memory Expansion » Technology) [6]. It’s a hardware memory
compression/decompression technique. that improves the performance of servers via increasing the usable size of
off-chip main memory. Data are, compressed, in main memory and decompressed when moved from main
memory to the off-¢hip shared L3 cache. Memory. management hardware dynamically allocates storage in small
sectors to accommodate storing variable-size compressed data block without the need for garbage collection.
IBM reports compressionyratios (compressed size divided by uncompressed size) ranging from 16% to 50%.
X-Match is a dictionary-based compression algorithm. It matches 32-bit words using a content addressable
memory.that allows partial matching with dictionary entries and outputs variable-size encoded data that depends
on the type af match. To improve coding efficiency, it also uses a move-to-front coding strategy and represents
smaller indexes with,fewer bits:”Although appropriate for com- pressing main memory, such hardware usually
has a very large block which is inappropriate for compressing cache lines. It is shown that for X-Match and two
variants of Lempel-Ziv algorithm, i.e., LZ1 and LZ2, the compression ratio for memory data deteriorates as the
block size becomes smaller [7]. For example, when the block size decreases from 1 KB to 256 B, the
compression ratio for LZ1 and X-Match increase by 11% and 3%. It can be inferred that the amount of increase
in compression ratio could be even larger when the block size decreases from 256 B to 64 B. In addition, such
hardware has performance, area, or power consumption costs that contradict its use in cache compression.

Other work proposes special-purpose cache compression hardware and evaluates only the compression ratio,
disregarding other important criteria such as area and power consumption costs. Frequent pattern compression

(FPC) [8] compresses cache lines at the L2 level by storing common word patterns in a compressed format.

231 |Page
WWw.ijarse.com

International Journal of Advance Research In Science And Engineering http://www.ijarse.com
IJARSE, Vol. No.3, Issue No.11, November 2014 ISSN-2319-8354(E)

Patterns are differentiated by a 3-bit prefix. Cache lines are compressed to predetermined sizes that never exceed
their original size to reduce decompression overhead. Based on logical effort analysis [9], for a 64-byte cache
line, compression can be completed in three cycles and decompression in five cycles, assuming 12 fan-out-four
(FO4) gate delays per cycle. To the best of my knowledge, there is no register transfer level hardware
implementation or FPGA implementation of FPC power consumption, and area overheads are unknown.
However, without a cache compression algorithm and hardware implementation designed and evaluated for
effective system-wide compression ratio, hardware overheads, and interaction with other portions of the cache

compression system, one cannot reliably determine whether the proposed architectural schemes are beneficial.

be easily analyzed.
3) C-pack makes a pair of compressed lines to fit into a single

[oo

3
Z
L2
T

Compressor/
Decompressor

Interconnection network

!

I Memory

Fig-1: System Architecture in which cache compression is used

232 |Page
WWW.ijarse.com

International Journal of Advance Research In Science And Engineering http://www.ijarse.com
IJARSE, Vol. No.3, Issue No.11, November 2014 ISSN-2319-8354(E)

3.1 C-Pack Compression Algorithm

This algorithm used for compression and decompression of the data commonly found in microprocessor low-
level on-chip caches, e.g., L2 caches. C-Pack which has several advantages as mentioned. Those are C-pack
algorithm requires hardware that can de/compress a word in only a few CPU clock cycles. This rules out
software implementations and has great influence on compression algorithm design. Cache compression
algorithm is lossless to maintain correct microprocessor operation. The complexity of managing the locations of
cache lines after compression influences feasibility.

It achieves a good compression ratio when used to compress data commonly found in microprocessor low-level
on-chip caches, e.g., L2 caches. Its design was strongly influenced by prior werk on, pattern based partial
dictionary match compression [11]. However, this prior work was designed for software,based main memory
compression and did not consider hardware implementation. C-Pack achiexes compression byatwo means: (1) it
uses statically decided, compact encodings for

frequently appearing data words and (2) it encodes using a dynamicallyjyupdated dictionary allowing adaptation

to other frequently appearing words. The dictionary suppofts partial word matching<as wellgas full word

matching.
Two words input
First worg | Second word
Pattern matching Palteen maaching
{compere w/ paltem {compare w/ pattesn
2222 and 2229 222z and z12%
Pattom Partem
matchedd 7 Yeou Yes malched?
Outpet by Output by
combining code and combining code and
unmatchad bytes unmaiched bytes
No 1 No
‘ Push intojdictionary ‘ ‘
Dicticrary matching Dictionary matching
(compare w/ (compise w/! dictionary
dictionary entries) entries and the fest word)
‘ Dictionary b

Output by combining Output by combineng
ocode. unmatchad bytes code, unmatchad bytes |
and dictionary entry nckex i aictionary entry index

Fig 2: C-pack compression
The patterns and ‘eoding schiémes used by C-Pack are summarized in Table |. The ‘Pattern’ column describes
frequently appearing ‘patterns, Where ‘z’ represents a zero byte, ‘m’ represents a byte matched against a

3

dictionary entry, and X’ represents an unmatched byte. In the ‘Output’ column, ‘B’ represents a byte and ‘b’
represents a bit. The C-Pack compression algorithms are illustrated in Fig. 2. Here use an input of two words per
cycle as an example in Fig. 2. However, the algorithm can be easily extended to cases with one, or more than
two, words per cycle. During one iteration, each word is first compared with patterns “zzzz” and “zzzx”. If there
is a match, the compression output is produced by combining the corresponding code and unmatched bytes as
indicated in Table I. Otherwise; the compressor comparess the word with all dictionary entries and finds the one
with the most matched bytes. The compression result is then obtained by combining code, dictionary entry
index, and unmatched bytes, if any. Words that fail pattern matching are pushed into the dictionary. Fig. 3

shows the compression results for several different input words. In each output, the code and the dictionary

233 |Page
WWw.ijarse.com

International Journal of Advance Research In Science And Engineering

IJARSE, Vol. No.3, Issue No.11, November 2014

http://www.ijarse.com

ISSN-2319-8354(E)

index, if any, are enclosed in parentheses. Although we used a 8-word dictionary in Fig. 3 for illustration, the

dictionary size is set to 64 B in our implementation. Note that the dictionary is updated after each word

insertion, which is not shown in Fig. 3.

The Compression simulation results for the given original data are shown in the figure 4.

DICTIONARY

HFFFFFFF | 3527894E | 000756AB | 12345678 | AAAAAAAA | 12340000 | BBBB2022 | VMVGRCEV

oo Match pattem. Yei | Coderablelasky ® | Combine codewrord 0

W&;&E‘i " ? unmatched bytes

00000059 Match pattem Yes | Codetzblelookup ua | ?ﬂﬁ;l;h—;i;;:: (1onss

ANBOCODO mﬂ Ho dijﬁ:{:f:;&s ¥e . Code tablz loakup al Cﬁr:?:a;ﬂ;i:?’d (WIANERCIDG

12345678 Mztch partem ch= i:‘_::n‘::a;:;‘!s e Cade tzblz loakup LI 5,:,:‘:;;’; '311= Eﬂn:;::;;d]::::i ooy

oTIEES Mztch patte };o= i:‘_::;:e:;;t:s Yo | Cade tablz laakup 110 . SI:;;:E 100 :“&n::;::]:.;d;::::i (111010032

— 01 mbine cadswas (1100015854
12343854 Mstch pattem No= 21[‘_::::2;;1155 Yes . Code table lookup 100 N S.:;:m 1o Sm:t{:h!d:ﬂ!:
Fig-3: Example on'Cache Compression

Code Pattern Output Length(b)
00 7227 (00) 2
01 OO (01)BBBB 34
10 mmmm (10)bbbb 6
1100 mmxx (1100)bbbbBB 24
1101 227X (1101)B 12
1110 | mmmx | (1110)bbbbB 16

Table-1: Pattern Encoding for C-pack

3.2 C-Pack Decompression Algorithm

Fig. 4 : Simulation results for compression

During decompression, the decompression first reads compressed words and extracts the codes for analyzing the

patterns of each word, which are then compared against the codes defined in Table I. If the code indicates a

pattern match, the original word is recovered by combining zeroes and unmatched bytes, if any. Otherwise, the

decompression output is given by combining bytes from the input word with bytes from dictionary entries, if the

code indicates a dictionary match. Decompression simulation results for the give compressed data are shown in

the figure 5.

WWw.ijarse.com

234 |Page

International Journal of Advance Research In Science And Engineering http://www.ijarse.com
IJARSE, Vol. No.3, Issue No.11, November 2014 ISSN-2319-8354(E)

.

Two compressed
WOorss input
First compressed word | Second compressed word
Road = tho code for Road n the code for
analyzing panems (2- analyzing pattems
bt or 4-0it) (2- bt or 4-001)
Lattem Pattem
matching code? ; Yes Yes { matahing code ?
Docompross by Docampress by
combining zeros &nd | | combining zeros and
No unmatched bytes unmaiched bytes No
Decompress by combining Decompress by combining
bytes from input and the Push irto dictionary bytes from input and the
comaspondding dictionary COoMesponaing tictonary
“?’)‘ antry
Dictionary

Fig 5: C-Pack Decompression
The C-Pack algorithm is designed specifically for hardware implementation. It takes advantage of simultaneous
comparison of an input word with multiple potential patterns and dictionary_entkies. This allows rapid execution
with good compression ratio in a hardware implementation, but maynot“be \suitable for a software
implementation. Software implementations commonlymserialize operations. For example, matching against
multiple patterns can be prohibitively expensive for software implementations when the number of patterns or
dictionary entries is large. C-Pack’s inherently parallel design allows an effieient hardware implementation, in

which pattern matching, dictionary matching, and.processing multipleswords are all done simultaneously.

Fig 6: Simulation results for decompression

IV EFFECTIVE SYSTEM-WIDE COMPRESSION RATIO

Compressed cache organization is a difficult task because different compressed cache lines may have different
lengths. Researchers have proposed numerous line segmentation techniques [2], [3], [10] to handle this problem.
The main idea is to divide compressed cache lines into fixed-size segments and use indirect indexing to locate
all the segments for a compressed line.

The effective system-wide compression ratio is defined as the average of the effective compression ratios of all
cache lines in a compressed cache. It indicates how well a compression algorithm performs for pair matching
based cache compression. The concept of effective compression ratio can also be adapted to a segmentation

based approach. For example, for a cache line with 4 fixed-length segments, a compressed line has an effective

235|Page
WWw.ijarse.com

International Journal of Advance Research In Science And Engineering http://www.ijarse.com
IJARSE, Vol. No.3, Issue No.11, November 2014 ISSN-2319-8354(E)

compression ratio of 25% when it takes up one segment, 50% for two segments, and so on. In this paper, reduce

the effective system-wide compression ratio for better high performance of microprocessor.

V.CONCLUSION

Code compression algorithm for high performance of microprocessor is presented to reduce the compression
ratio in this work. The algorithm is based on pattern matching and partial dictionary coding. Its hardware
implementation permits parallel The proposed architecture is defined in verilog HDL and simulated using Xilinx

ISE tool. The Code is synthesized using Xilinx XST tool and implemented using FPGA Spartan 3E starter Kit.

The proposed algorithm yields an effective system-wide compression ratio of 41£25%, and permits a hardware

implementation with a maximum decompression latency of 6.67 ns in 65 n ogy. It can also be

used in other high-performance lossless data compression applications wi

REFERENCES

[1] Xi Chen, Lei Yang, Robert P. Dick,, “C-Pack: A High-

[4] A. Moftat, “Implementingithe
1917-1921, Nov. 1990.

[9] I. Sutherland, R.
Diego, CA: Morgan Kaufmann, 1999.

proull, and D. Harris, Logical Effort: Designing Fast CMOS Circuits, 1st ed. San

[10] J.-S. Lee et al., “Design and evaluation of a selective compressed memory system,” in Proc. Int. Conf.
Computer Design, pp. 184-191, Oct. 1999.

[11] L. Yang, H. Lekatsas, and R. P. Dick, “High-performance operating system controlled memory
compression,” in Proc. Design Automation Conf., Jul. 2006, pp. 701-704.

236 |Page
WWW.ijarse.com

