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ABSTRACT 

 
Among the three design styles in VLSI, the gate array design style is relatively simple. This simplicity is gained 

at the cost of rigidity imposed upon the circuit both by the technology and the prefabricated wafers. The number 

of SRAM locations used to implement a Look-up Table (LUT) based Configurable Logic Block (CLB) plays a 

crucial role. In this research work, an attempt is made to address the issue of optimizing the utilization of LUTs 

such that more number of functionalities can be accommodated. Thus this novel procedure reduces the number 

of LUTs/CLBs/slices required for various functionalities to be implemented. Theoretical calculations clearly 

show the extent of optimization achieved. The results obtained are very encouraging. 
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I INTRODUCTION 

 
The Field-Programmable Gate Array (FPGA) architecture mainly consists of two parts: the logic blocks and the 

routing network [1]. A logic block has a fixed number of inputs and one output. A wide range of functions can 

be implemented using a logic block. Given a circuit to be implemented using FPGAs, it is first decomposed into 

smaller sub-circuits. Each of the sub-circuits can be implemented using a single logic block. There are two types 

of logic blocks. The first type is based on Look-Up Tables (LUTs), while second type is based on multiplexers. 

Look-up table based logic blocks: A LUT based logic block is just a segment of RAM. A function can be 

implemented by simply loading its LUT into the logic block at power up. If function f = A‟BC + AB‟C‟ needs 

to be implemented, then its truth table is loaded into the logic block. In this way, on receiving a certain set of 

inputs, the logic blocks simply „look up‟ the appropriate output and set the output line accordingly. Because of 

the reconfigurable nature of the LUT based logic blocks, they are also called the Configurable Logic Blocks 

(CLBs). It is clear that 2
Imax

 bits are required in a logic block to represent a Imax bit input, 1-bit output 

combinational logic function. Obviously, logic blocks are only feasible for small values of Imax.. Typically, the 

value of I is 5 or 6. For multiple output and sequential circuits the value of Imax is even less [1]. 
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Multiplexer based logic blocks: Typically a multiplexer based logic block consists of three 2-to-l multiplexers 

and one two-input OR gate. The number of inputs is eight. The circuit within the logic block can be used to 

implement a wide range of functions. One such function, shown in Fig. 1(a) can be mapped to a logic block as  

shown in Figure 1(b). Thus, the programming of multiplexer based logic block is achieved by routing different 

inputs into the block. 

 

 

Fig. 1. A logic function mapped to a mux based logic block 

 

1.1 Related Work 

Satwant Singh et. al. [2] explores the effect of logic block architecture on the speed of a FPGA. Four classes of 

logic block architecture are investigated: NAND gates, multiplexer configurations, lookup tables, and wide-

input AND-OR gates. An experimental approach is taken, in which each of a set of benchmark logic circuits is 

synthesized into FPGA‟s that use different logic blocks. The speed of the resulting FPGA implementations 

using each logic block is measured. While the results depend on the delay of the programmable routing, 

experiments indicate that five- and six-input lookup tables and certain multiplexer configurations produce the 

lowest total delay over realistic values of routing delay. The primary reason is that these blocks can implement 

typical logic using the fewest levels of logic blocks, and thus incur a small number of stages of the slow 

programmable routing present in all FPGA‟s. The secondary reason is that their inherent combinational delay is 

not excessive. The fine grain blocks, such as the two-input NAND gate, exhibit poor performance because these 

gates require many levels of logic block to implement the circuits and hence require a large routing delay [2]. 

Thus it can be seen that the amount of logic which is necessary for a configurable logic block is crucial for the 

performance of the FPGAs [3][4][5]. It is true that the FPGAs must be selected in such a way that the least 

number of CLBs must be used, while mapping a design, it is interesting to look into the aspects of the size of 

CLBs for specific design cases. i.e. if the design consists of majority of similar blocks (example, half adders, full 

adders, multiplication units etc.), then an attempt can be made to theoretically find the minimum capacity of 

CLBs necessary[6][7][8]. 
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II PROBLEM FORMULATION 

In a 5-input CLB, all 2
5
 combinations have to be stored. The problem definition is to suggest a method which 

stores only those entries which generate either a logic 0 or logic 1 output, whichever is greater without loss of 

functionality [1]. If the scope of problem is expanded, then the above problem instance can be made to store the 

relevant values of logic 0 and/or logic 1 for a total of 2
n
 combinations of outputs corresponding to a given 

function. 

This problem instance is clearly a case of optimization, where the objective function is to reduce the number of 

storage components used. i.e. 

…………………………………………………………………………………….…..(1) 

Where Ci indicates the capacity of i
th

 CLB. „n‟ indicates the total number of CLBs considered in the design. 

III PROPOSED SOLUTION METHODOLOGY 

The proposed solution methodology consists of analyzing the functionalities of basic computational structures 

like gates, adders etc. to evolve the method to implement more complex functionalities. 

TABLE 1. TRUTH TABLES OF BASIC GATES 

Input Output 

A B AND Gate OR Gate NAND Gate NOR Gate XOR Gate XNOR Gate 

0 0 0 0 1 1 0 1 

0 1 0 1 1 0 1 0 

1 0 0 1 1 0 1 0 

1 1 1 1 0 0 0 1 

 

Case 1: Analysis of AND gate: It can be easily seen that the number of times a logic 0 occurring is 3 out of 4 

combinations. In terms of percentage, it is 75%. Hence it may be chosen to be stored in a CLB, so that the CLB 

need not have all those combinations which map to logic 0 output.  

Case 2: Analysis of OR gate: For OR gate, the number of times a logic 1 occurring is 3 out of 4 combinations. 

In terms of percentage, it is 75%. Hence it may be selected to be stored in a CLB. This implies that the CLB 

need not have all those combinations which map to logic 0 output.  

Case 3: Analysis of NAND gate: By referring to the Table I, it can be easily seen that the number of times a 

logic 1 occurring is 3 out of 4 combinations. In terms of percentage, it is 75%. Hence it may be chosen to be 

stored in a CLB, so that the CLB need not have all those combinations which map to logic 1 output. This equals 

the number of occurrences of logic 1 output in OR gate, however, the input combinations are different for the 

production of logic 1 output. 

Case 4: Analysis of NOR gate: In a NOR gate, the logic 0 occurs 3 times. Hence only those input combinations 

need to be mapped for the purpose of storing the logic in CLBs. 

Case 5: Analysis of XOR gate: In the case of XOR gate, the percentage of occurrences of logic 0 output and 

logic 1 output are equal. Hence one may not be able to achieve higher optimization for storing the output in 

CLBs. 

Case 6: Analysis of XNOR gate: The argument as in case 5 holds good here as well, except for the input 

combinations producing the logic 0 and logic 1 outputs. 

Case 7: Analysis of Full Adder: Table 2 provides the truth table of a single-bit full adder. 
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 TABLE 2. TRUTH TABLE OF FULL ADDER 

 

 

In the simplest form, for a 1-bit full adder, the capacity of the CLB is 8 bits. However, a closer examination of 

the output pattern reveals that since there are two outputs, only 4 combinations of sum and carry exist. In 

addition to this, the patterns repeat. Table 3 provides the occurrences of these patterns. 

TABLE 3. FREQUENCY OF OCCURRENCES OF OUTPUT PATTERNS IN FULL ADDER 

Output combinations Frequency of occurrence 

(in terms of no. of times) Sum Carry out 

0 0 1 

0 1 3 

1 0 3 

1 1 1 

Thus, a novel design procedure to increase the capacity or CLBs is suggested in this work. Since there are 4 

unique combinations of output patterns, it is sufficient to have a 2-to-4 decoder. The modified truth table is 

shown in table 3.  

TABLE 4. MODIFIED TRUTH TABLE WITH OPTIMISED DECODER. 

 

 

 

 

 

Thus it is proposed that the single-bit full adder implementation after using the optimized decoder results in 

reduced number of locations in CLBs for storing the outputs. Fig. 2 shows the block diagram of the optimized 

decoder. 

 

 

 

  

Fig. 2. Block diagram of the optimized decoder 

Input Output 

A B Cin Sum Carry out 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

Input Decoder Outputs Output 

A B Cin x y Sum Carry out 

0 0 0 0 0 0 0 

0 0 1 0 1 1 0 

0 1 0 0 1 1 0 

0 1 1 1 0 0 1 

1 0 0 0 1 1 0 

1 0 1 1 0 0 1 

1 1 0 1 0 0 1 

1 1 1 1 1 1 1 
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The following Table 5 gives the comparison. 

TABLE 5. COMPARISON OF CAPACITY OF CLBS FOR FULL ADDER. 

Full adder No. of locations in CLB required 

Without optimized decoder 8 

With optimized decoder 4 
 

It is easy to observe a 50% difference in the CLB requirement.  

Case 8 : Issues in Implementation of Carry Look-ahead Adder  

A carry-look ahead adder improves speed by reducing the amount of time required to determine carry bits. 

Carry-look ahead adder design is a way of reducing the complexity of this ideal, but impractical, arrangement by 

hardware sharing among the various look ahead circuits. Comparisons can be drawn between CLA and a 

simpler, but usually slower, ripple carry adder for which the carry bit is calculated alongside the sum bit, and 

each bit must wait until the previous carry has been calculated to begin calculating its own result and carry bits. 

The carry-look ahead adder calculates one or more carry bits before the sum. This reduces the wait time to 

calculate the result of the larger value bits. Fig. 3 shows i
th

 stage full adder with Propagate signal (Pi) and 

Generate signal (Gi). 

 

Fig. 3. shows i
th

 stage full adder with Pi and Gi 

Two signals namely Propagate (P) and Generate (G) are used. The signals Pi and Gi are given by:  

Pi = Ai XOR Bi………………………………………………………………………………………………..…(2)  

Gi = Ai AND Bi…………………………………………………………….........................................................(3)  

The output sum and carry can be defined as:  

Si = Pi XOR Ci…………………………………………………………………………………...........................(4)  

Ci+1 = Gi + PiCi……………………………………………………………………..............................................(5)  

Gi is known as the carry Generate signal since a carry (Ci+1) is generated whenever Gi=1, regardless of the input 

carry (Ci). Pi is known as the carry propagate signal since whenever Pi =1, the input carry is propagated to the 

output carry, i.e., Ci+1. = Ci (note that whenever Pi=1, Gi=0).  

Computing the values of Pi and Gi only depend on the input operand bits (Ai& Bi) as clear from the equations. 

The Boolean expression of the carry outputs of various stages can be written as follows:  

C1 = G0 + P0.C0                                                                     

C2 = G1 + P1.C1 = G1 + P1.G0 + P1.P0.C0                                 

C3 = G2 + P2.G1 + P2.P1.G0 + P2.P1.P0.C0                                 

C4 = G3 + P3.G2 + P3.P2.G1 + P3P2.P1.G0 + P3P2.P1.P0.C0 
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      TABLE 6. TRUTH TABLE OF                           TABLE 7. FREQUENCY OF OCCURRENCES OF   

 A 2-BIT CARRY LOOK-AHEAD ADDER                        OUTPUT PATTERNS IN FULL ADDER 

The block diagram of a simple 4-bit CLA is shown in Fig. 4. The carry look-ahead network calculates the Pi and 

Gi terms. 

  

 

 

 

 

 

  

 

 

Fig. 4. Shows the Block Diagram of A 4-Bit CLA 

IV RESULTS AND DISCUSSIONS 

The optimization performed on the basic logic gates shows encouraging results. Table 8 provides a 

comprehensive summary of the theoretical results for various basic gates. It is interesting to note that for a 2-bit 

CLA, the output is never driven to “111” (CoutS1S0) combination. Hence the gain is 56.25%. Further, as the 

number of inputs is increased, the gain in terms of reduced number of locations in CLBs is increased 

exponentially.  

 

Inputs Outputs  Output combinations Frequency of occurrence 

(in terms of no. of times) Y1Y0 X1X0 CoutS1S0  Cout S1 S0 

00 00 000  0 0 0 1 

00 01  001  0 0 1 2 

00 10 010  0 1 0 3 

00 11  011  0 1 1 4 

01 00 001  1 0 0 3 

01 01 010  1 0 1 2 

01 10 011  1 1 0 1 

01 11 100  1 1 1 0 

10 00 010      

10 01 011      

10 10 100      

10 11 101      

11 00 011      

11 01 100      

11 10 101      

11 11 110      

Carry Look-ahead Network 

 

 

FA0 

 

FA1 FA2 

 

FA3 

 

C

0 

S

3 
S

1 

S

2 
S

0 
Cout 

X0 

g0 

Y

0 
X1 Y

1 

X2 Y

2 

X3 Y

3 

p0 g1 p1 g2 p2 



International Journal of Advance Research In Science And Engineering           http://www.ijarse.com  

IJARSE, Vol. No.3, Issue No.10, October 2014                                                     ISSN-2319-8354(E)  

 

274 | P a g e  
www.ijarse.com 

TABLE 8. SUMMARY OF THEORETICAL CALCULATIONS 

Function 

No. of inputs 

and bits per 

input 

No. of locations in 

CLB required 

 

Gain in 

terms of 

Reduced 

no. of 

locations 

in CLBs 

Without 

address 

mapper 

With 

address 

mapper 

AND (2,1) 4 2 50% 

OR (2,1) 4 2 50% 

NAND (2,1) 4 2 50% 

NOR (2,1) 4 2 50% 

XOR (2,1) 4 2 50% 

XNOR (2,1) 4 2 50% 

Full Adder (3,1) 8 4 50% 

CLA (2,2) 16 7 56.25% 
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Fig. 5. Plot of variation in number of bits in inputs versus non-unique/unique outputs in CLA 

The plot of number of bits in the input versus the gain in capacity of LUT in a CLB for carry look-ahead adder 

is shown in fig.6 on the following page. For a 2-bit,3-bit,4-bit and 5-bit input implementations, the gains are 

50%, 56.25%, 76.53%, 75.78% and 93.85%. With the increasing number of input bits, it is easy to see that the 

gain values increase exponentially.   
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Fig. 6. Plot of number of bits in the input Vs. gain in capacity of LUT in a CLB for carry look-ahead 

adder 

 

V CONCLUSIONS 

It may be observed that with careful analysis of the outputs of the digital circuits, a certain level of optimization 

can be achieved. This optimization in hardware when used with the design optimization results in smaller and 

faster implementations. The views presented in this work may be extended with suitable modifications to any 

other functionality as well. Though the generalization may be difficult, the same line of thinking may be applied 

to domain-specific problems so that specific FPGA architectures may be evolved for better performance 

parameters. 

The carry look-ahead adder (CLA) related issues are briefed. The results show a small dip in gain (in %) for the 

number of input bits equal to 4. This can be attributed to the less number of unique outputs for the CLA. Hence, 

one can also conclude the dependence of gain on the number of input bits.  
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