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Abstract

In the present paper we derive a differentiation formulae for H-
function which was introduced and studied in a paper by Devra and
Raithie [5, 107 — 113]. Special cases inclue known and new formulae for
special function such as H-function, generalized Wright hypergeometric
function.
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1 Introduction

Special Function have contributed a lot to the Science and Engineering. Inayat-Hussain
(1987a) introduced generalization form of Fox’s H-function which is popularly known as
H-function.

Now H-function stands on fairly firm footing through the research contribution of various
authors like Inayat-Hussain (1987b), Rathie (1993), Gupta & Soni (2005), Chaurasia & singh
(2010). Agrawal & Mehar (2012). Marko. Pandey & Sukla (2013).

The H-Function is defined and represented in the following manner [2, 10].

—Fm.n _ g aj,Ajiaz)ia T (@A )nst,
Hy g (2l = Hyg [2l) By, o v by By B )

1 +ioo
= ﬁ; je<8 0(8)2 ds. (l)

where #(s) is given by

72, T(b; — B;s) 17_, T (1 — a; + A;s)

Ofs) = M1 TP (1 = b; + B;s) T, 1, T(a; — A;s) (2)
Also
(i) 2z # 0.
(i) i = \/(=1).

(iii) m,n.p,q are integers satisfying0 < m< ¢.0< n < p.

(iv) L is a suitable contour in the complex plane.

(v) An empty product is interpreted as unity.

(vi) 4,5 =1...pBj.j=1..qa;j=1..n:8;j=1,.. q are real positive numbers.
(vii) a;j,j = 1....p and b;,j = 1,....q are all complex numbers,
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The nature of contour L, sufficient conditions of convergence of defining integral (1) and
other details about the H-Function can be seen in the paper [8].

The behaviour of the H-function for small values of |z| follows easily from a result given by

[12]:

—‘ﬂll’l

H, . [2] = O(|2]):
where

a = min Re( ) |z| = 0.
1<j<m

m n q P
Q=318+ laiAl— Y 18Bil- Y A;>0and0< 2| <.
j=1 =1 j=m+1 j=n+1

If f(x) is a linear polynomial in z and D represents i’; then
f(Dz) 2" = fla +1) 2° (3)
The ,¥,(z) function will be defined and represented [8] as follows

Ajiaj) (1—aj Ajay)1, )

p'*’ [(:’ B'an'):,' pq+1[ 2/(0 1?,’(1-'5,.’8;;2,).,,-] (4)
The function p5,1(.2) is termed as generalized Wright hypergeometric function because it
gives Y, for A; =1 j=1..pBj=1j=1...qinit.

An important special case of p-y—'kq(z) that generalizes several special functions of practical
importance is given as

[(ﬂ, >15 a,); ’ ] z:l{r(b.’)} '—'1 P [_ /(l—ﬂ,,l:a,)l,' ] (3))
rFa (b5 X:By)ag = ‘?=l{l‘(aj)}° 1 (0,1),(1=b;,1:8;)1,9" »

The function ,,Eq(z) reduces to the well known ,v,(2) fora; =1,...p:3; =1, )=1....¢in
it.

In this paper for the sake of brevity we shall use the following contracted notation for H-
function in (1).

where

A stand for (aj, Ajia;)1, . Bstand for  (b;. Bj)1m
C stand for (a,-,Aj),..,.LP % D stand for (bj, B_ﬁﬁj)mﬁ-l.q-

2 Main Results

l(az® +b)D — Mi]...[(az* + b)D — A J{(az® + b Ty [2(az® + b) /3 S}

- n_"‘ n+r % c;—a,hiih, A, C
=a (al' 2 b) p+r, q+r[2(al + b)h/(B, D_.(c,' )-Q+l.hil)l,r]‘ (6)
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provided i > 0 and a, b are complex munbers, r is a positive integers .A = ac; where a and
¢; are not simultaneously zero, and i =1, ...r.

Proof: Taking L.H.S. of (6) and using definition of H-function (1) and (2).
operating under the integral sign using (3).the expression becomes

a’(ax® + b)n'7_1l'ri / O(s)a+ hs+1—e]..[a+ hs + 1 — ¢ ]z*(azx® + b)"*ds.
= L

Expressing (o + hs+ 1 —¢;)as

Fla+hs+2—¢;)

(a+hs+1—¢)= (a+hs+1—¢c;)

sfory=1,.ur

and interpreting with the help of (1). the result follows.

Differentiation under the integral sign used in the proof is valid.provided

(i) #(s)2*(ax’ + b)**** is continuous function of z and s.

(ii) O(s)(a+hs+1—cy)..{a+hs+ 1 —¢.)2*(axr” + b)a + hs is continuous function of x and
S,
(iii) [, #(s)z*(ax” + byhsds converges.

(iv) [L0(s)a+hs+1—cp)..(a+ hs + 1 — . )2%(az” + b)*" o is converges uniformly
with respect to .

The conditions on continuity are clearly satisfied and conditions on convergence are satisfied
when the L.H.S. of (6) exists.

Special case:

When ¢;'s are zeroes.(6) reduces to the following result

[(az® + b)D — Ar]...[(az® + b)D — A J{(az® + b)* Hyy' [2(az” + b)" /5y ST}
r - am.n+ —a,h:l _,,A,C o
=a"(az" + b)) H L o [alax + B /5 0 (@)

provided i > 0 and a. b are complex numbers. r is a positive integers .\ = ac; where a and
¢; are not simultaneously zero, and i = 1. ... 7.
When the A's are in the arithmetic progression (6) takes the following form-

[(az” + b)D — AJ[(az” + B)D — A + k]...[(az” + b)D — A + (r — 1)A]

{laz® + b)* T, " [z(az” + )"/ D]}

> ad+cman+1 v —r—a,k:1). A.C
=5 a"d'(a;r + b) 4 Hp-v-[,q-f-l[z(a;t + b)hd/(Bl,D, (l—tla).h:l)tl,r)]' (8)

provided d # 0,h > 0 a and b are complex numbers. r is a positive integer, A = ac.k = ad.
a and c¢ are not simultaneously zero.

Proof: Taking L.H.S.of (8) and using (1), where f(s) is given by (2). we have operating
under the integral sign using (3). the expression becomes
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Expressing
I'a+hs+r)

(a+hs)(a+hs+1).(a+hs +r—1) = =y

and interpreting with the help of (1), the result follows.
when A\, = Az = A3 = .... = A\, = A (6) becomes

w—TL, 7L

[(az" + b)D]"{(az® + b)* T H, ; [2(az® +b)"/ l}

r ate T + v —a.h:1)1,,A.C
= a”"(az" + b)*+ ;:q;r[z(az +b)h/(B.D,(1’ln.h:l)u.r]' (9)

provided £ > (). a and b are complex numbers, r is a positive integer and A=ac . a and ¢ are
not simultaneously zero .

Specializing the parameters in (6) and using (4), (6) reduces to

[(az® +B)D = As]..[(az" + b)D — AJ{(ax” + b)° B, (57 557007 2(az” + b))}

— l—a—cy.hil)y v, (a5, A0
=a’(az" +b)p+rwq+r[/§n_c ;’1)‘ ')l(b (B’J :)1,)’ *:2(ax” +b) . (10)

provided h > 0,a and b are complex numbers, r is a positive integer. A = ac; where a and
¢; are not simultaneously zero,and i = 1. .., r.
Further specializing the parameters and using (5),(6) reduces to

[(az® + B)D — Au]...[(az® + B)D — A (az” + b) ,Fy (57157 s 2(az® + b)]}

2
r v r - a-— 1.1:1)4 . Aja
=a H(a —¢;)(ax® +b) ,H.,Fq_,_,.[:a_::"; e r)l(b,f;;,,ﬁ:):’)‘ *: z(az® + b)h], (11)
=1

provided /i > 0, @ and b are complex numbers, r is a positive integer.

When a = 1. b= 0.(6) (7) and (8) reduces to the results obtained By Devra and Rathie [2, pp107
113).

Now. if we put a; = 1, for j = l....,n and 3; = 1 for j = m + 1....,q in equatios
(6). (7). (8) and (9) to obtain the corresponding formulas for H-function of Fox.

[(az” +)D — AiJ...[(az” + B)D — AJ{(az® + B)* Hpy[2(az” + ) /(57 207}

o T4 y h ( e -h) .r'( A ) H ¢
=a"(az® + b)*H 7ot [2(az” + b) /(g;, éf,.,:. (CJ"_’Q il (12)

227 |Page

WWW.ijarse.com




International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.3, Issue No.9, September 2014 ISSN-2319-8354(E)

provided h > (), @ and bare complex nunbers, r is a positive integers. A\ = ac; where a and
¢; are not simultaneously zero, and i = 1,...r.

[(az® + B)D]"{(az® + b)™ Hya"[2(az” +b)" /G570 7]}
v v o m.n+r v (—a,h)y (0. A5),
=a"(az” + b)* Hyyrrt [2(ax +b)"/(b:B,_)’l gt wicon Ko B (13)

P

provided i > 0, a and b are complex numbers, r is a positive integer.

[(az® + b)D — A][(az® + b)D — A+ K]...[(az” + b)D — A + (r — 1)k}{(az"” + pyodte

m.n v h (a;. Az )1,
H [z(ax” + 0)"df 757 7]}

(b5.55)1.9
¥ 1 1—r—o.h), A
= a d{ae® 3 D)THEHTR T fae® 4 BN U S (0], (14)

provided d # 0.k # 0.h > 0, a and b are complex number. r is a positive integer. A =
ac,k = ad. a and ¢ are not simultaneously zero.

[(az® + B)D] {(az® + b)**° H . [z(ax® + )" /(7 5717 ]}

r o a+c = r —ah)s (a;,A *
= a"(ax® + 0> HNE fe(as® + BN ol die ), (15)

provided & > 0, a and b are complex numbers. r is a positive integer. Whena = 1.b =0(12)

.(13)and(14) are the results given by Nair[7. pp74 — 78].
when r = 1. equation (11) reduces to

[(az® + b)D — A[{(az® + B) ,Fo[(a7 155907 2(az® + )]}

. — a—c+1.1:1), Sl v
=a(a—c)(az® +b) pa1 Fyp lén—c:lzl)‘ )(b_(":;:;?,):.il": z(ax® + b)], (16)
provided i > 0.a and b are complex numbers. A = ac .aand c are not smultaneously zero.

Now. in (16) put a; = 3; = 1 to get the following result:

[(az® + b)D — Al{(az® + b)* ,,F,,[g::)):":: z(ax® + b)]}

v a {a—c+1).(a,;);, v
= a(a —c)(az® + b)ﬁlf"“[/(o_c,_(,,,,,_’q bP2(axt + b)), (17)
provided e and b are complex numbers. A = ac, a and ¢ are not simultaneously zero.

Again by specializing the parameters in (17) a number of other results involving various
other special functions can be obtain.
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