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ABSTRACT 

The quantum effect of squeezing is investigated in the higher order of field amplitude in sixth harmonic 

generation under the short time approximation. Squeezing is found to be dependent on coupling constant g 

and phase of the field amplitude. The effect of photon number on higher order squeezing and signal to noise 

ratio has also been investigated. 
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I INTRODUCTION 

Since optical field obeys the laws of quantum mechanics, a minimum size of inherent quantum indeterminacy 

is always present with each excitation for single mode fields even in the absence of any external field. These 

are the vacuum fluctuations (zero–point fluctuations) of the electromagnetic field. The quantum limit can be 

circumvented by the use of squeezed states of light. Squeezed states comprise phase-dependent distributions 

of zero–point fluctuations such that the fluctuations in one quadrature are smaller than those of a coherent 

state, at the expense of increased fluctuations in the canonically conjugate quadrature, while preserving the 

Heisenberg limit on the uncertainty product. These states are called quadrature squeezed states of 

electromagnetic field. The earlier work is mainly devoted to second-order quantum squeezing. However, with 

the development of techniques for making higher-order correlation measurement in quantum optics, it was 

quite natural to turn the attention towards higher-order squeezing. Hillery [1] in 1987 introduced the concept 

of higher-order squeezing called ‘amplitude –squared squeezing’ different from that defined by Hong and 

Mandel [2].  

Squeezed states are a unique set of quantum states with no classical analogue. Many theoretical and 

experimental developments on squeezed states have taken place in a number of optical processes such as 

harmonic generation [4-6], multiwave mixing processes [7-9], parametric amplification [10], intermediate 

states and superposed coherent states [11-13], Raman process [14] and optical Faraday rotation [15].  

Squeezed states have become central to quantum optics through their promise of accuracy improved beyond 

the standard quantum limit in interferometers for detection of gravitational waves [16-17]. Besides their use 
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in ultra-precise measurements, squeezed states are also gaining relevance in quantum information science. 

They have been used to construct entangled states of lights to demonstrate quantum teleportation [18], 

quantum computation [19], optical storage [20], dense coding [21]. 

As the number of applications hitting the limit to their sensitivity set by quantum noise grows and as more 

squeezing becomes possible, the breadth of potential of squeezed states can only continue to expand higher-

order squeezing. In the present work we have reported that the generation of higher order squeezed state is 

possible by using sixth harmonic generation. 

 

II DEFINITION OF SQUEEZING AND HIGHER ORDER SQUEEZING 

 

Squeezed states of an electromagnetic field are the states with reduced noise below the vacuum limit in one 

of the canonical conjugate quadrature. Normal squeezing is defined in terms of the operators 

      † †
1 2

1 1
   and  

2 2
X A A X A A

i
 

Where 1X  and 2X
 
are the real and imaginary parts of the field amplitude, respectively. A  and 

†A  are 

slowly varying operators defined by 
  † †   and  i t i tA ae A a e  

The operators 1X  and 2X  obey the commutation relation 

   1 2
,

2
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Which leads to uncertainty relation (  =1) 

  
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A quantum state is squeezed in  iX  variable if 

  
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   for 1  2
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III SQUEEZING OF FUNDAMENTAL MODE IN SIXTH HARMONIC GENERATION 

 

Sixth harmonic generation model has been adopted from the works of Zhou yong et al. [22] and G.Wang and 

X. Wang et al. [23] is shown in figure 1. In this model, the interaction is looked  upon as a process which 

involves the absorption  of six photons, each having a frequency 1  
going from state 1  to state 2  and 

emission of one photon of frequency 2 where 2 16  . 
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                                               Fig. 1. Sixth Harmonic Generation Model. 

 

The Hamiltonian for this process is given as follows ( 1 ) 

     † † 6 † †6
1 2

H a a b b g a b a b
                                                                                            (1) 

in which g is a coupling constant for sixth harmonic generation.  

 1expA a i t  and  2expB b i t  are the slowly varying operators at frequencies 1 and 2 , 

 †a a
 
and  †b b

 
are the usual annihilation (creation) operators, respectively. The Heisenberg equation 

of motion for fundamental mode A is given as ( 1 )   


    

,
dA A

i H A
dt t                                                                                                                               (2)

 

Using Eq. (1) in Eq. (2), we obtain  

 
.

†56A igA B                                                                                      (3)              

Similarly, 

 
.

6B igA                                                                                                                                (4) 

By assuming the short time interaction of waves with the medium and expanding  A t
 
by using Taylors 

series expansion and retaining the terms up to 
2 2g t  as  

    

      
  


†5 2 2 †4 †3 4 †2 3

†2 2 † †5 6

6 3 30( 5 10 40

60 24 )

A t A igtA B g t A A A A A

A A A B B A A                                                          (5)                                                                                                                                                   

For squeezing of field amplitude in fundamental mode A , the real quadrature component is  
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     
 

†

1

1

2A
X A t A t

                                                                                                                   (6)

 

Initially, we consider the quantum state of the field amplitude as a product of coherent state for the 

fundamental mode A and the vacuum state for the harmonic mode B i.e. 

  0                                                                                     (7) 

Using Eqs.(5) and (7), number of photons in mode A  may be expressed as  

     
 



   

†
1

† †6 6 † 2 2 †6 66 6
A

N t A t A t

A A igt A B A B g t A A                                                                 (8)
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A A A A g t A A A A                                                                (9)
 

and 

     
 



     

3 2
1 1 1

†3 3 †2 2 † 2 2 †8 8 †7 7 †6 63 6 3 27 36
A A A

N t N t N t

A A A A A A g t A A A A A A
                      (10)                                                                                                                                      

Using Eqs.(5) and (7) the fourth-order amplitude of the fundamental mode is expressed as  

   
 
     
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For fourth order squeezing, the real quadrature component in fundamental mode is given as  

       
 

4 †4
1

1

2A
F t A t A t                                                                                              (13) 

Using Eqs.(7) and (11) in Eq. (13), we get the expectation value as 
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 Therefore, 
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    Using Eqs.(8) – (10), we get  

     
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Subtracting Eq. (17) from Eq. (16), we obtain 
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The right hand side of Eq. (18) is negative and thus shows the existence of squeezing in the Fourth order 

of the fundamental mode for which cos8 0  .  

 

IV SIGNAL-TO-NOISE RATIO  

 

Signal to noise ratio is defined as ratio of the magnitude of the signal to the magnitude of the noise. With 

the approximations 0   and
2

1gt = , the maximum signal to noise ratio (in decibels) in higher 

order of field amplitude, is given below.  

Signal-to-noise ratio in fourth order of field amplitude is defined as   

 
 




2
1

10 2
1

20 log
[ ]

( )
A

A

t
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F t

F

                                                                                                   (19)

 

Using Eqs. (14) and (16), SNR in fourth-order squeezing is expressed as  

   

   
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V RESULTS 

The results show the presence of squeezing in fourth order of field amplitude in sixth harmonic generation. 

Taking 
2 410gt  and 0   for maximum squeezing, the variations of  FS  is shown in Figure 2. 

Degree of squeezing is shown as a function of 
2

 . 

It is clear from Figure 2 that the squeezing increases non-linearly with
2

 . This confirms that the squeezed 

states are associated with the photon number in fundamental mode. The variation of SNR in fourth order of 

field amplitude for a squeezed state with photon number has also been shown in Figure 3.  

 

Fig. 2.  Dependence of fourth-order amplitude squeezing on 
2

 . 

 

Fig. 3.  Signal to noise ratio for fourth order squeezing. 
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VI CONCLUSION 

 

It is shown that the selective phase values of field amplitude of fundamental mode during sixth harmonic 

generation lead to squeezing up to fourth order. Further, Figures 2-3, show that the degree of squeezing 

increases with increase in the order of field amplitude of the fundamental mode. This also establishes the 

fact that processes with higher order non linearity are more suitable for generation of squeezed light which is 

used in reducing noise in the output of certain non linear processes. 
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