
International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.3, Issue No.3, March 2014 ISSN-2319-8354(E)

170 | P a g e

www.ijarse.com

LOAD-BALANCING MULTIPATH

SWITCHING SYSTEM WITH FLOW SLICE

R.Iniyavani
1
 ,

S.John Justin Thangaraj

2

1
 Final Year M.E-CSE/ Selvam College of Technology/ Namakkal/Tamilnadu (India)

2
 Associative professor/CSE/ Selvam College of Technology/ Namakkal/Tamilnadu (India)

ABSTRACT

Multi-Path Switching systems (MPS) are intensively used in the state-of-the-art core routers. One of the most

intractable issues is how to load-balance traffic across its multiple paths while not disturbing the intra-flow packet

orders. In this paper, based on the studies of tens of real Internet traces, we develop a novel scheme, namely Flow-

Slice (FS), which cuts off each flow into flow-slices at every intra-flow interval larger than a slicing threshold set to

1ms~4ms and balances the load on the finer granularity. Through theoretical analyses and comprehensive trace-

driven simulations, we show that FS achieves impressive load-balancing performance with little hardware cost

while limiting the packet out-of-order chances to a negligible level (below 10-6).

Keywords: Load Balancing, Switching Theory, Traffic Measurement,

I INTRODUCTION

 Multipath Switching systems (MPS) play a pivotal role in fabricating state-of-the-art high performance core routers

In general, MPS is built by aggregating several lower speed switches and, therefore, exhibits multiple internal data

paths .One major open issue in MPS is the load balancing problem defined as how to distribute incoming traffic A(t)

across its k internal switching paths to meet at least three objectives simultaneously:

1.1 Uniform Load Sharing: Traffic dispatched to each path should be uniform. Specifically in MPS, traffic

destined for each output should be spread evenly to avoid output contention, minimize average packet delay,

and maximize throughput.

1.2 Intraflow Packet Ordering: Packets in the same flow should depart MPS as their arrival orders. (Unless

otherwise stated, flow in this paper is defined by TCP/IP 5-tuple.) This ordering is essential since out- of-order

packets will degrade the performance of higher level protocols

1.3 Low Timing And Hardware Complexity: The load-balancing and additional resequencing mechanisms at

MPS should work fast enough to match the line rate, and should introduce limited hardware complexity. MPS

International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.3, Issue No.3, March 2014 ISSN-2319-8354(E)

171 | P a g e

www.ijarse.com

is most likely to hold hundreds of external ports operating at ultrahigh speed. To provide such scalability, the

timing/hardware complexity of O(1) is necessary.

 However, packets in the same flow may be forwarded in separate paths and experience different delays, thus

violating the intraflow packet ordering requirement. A straightforward solution is to use an explicit resequencer at

each output to restore packet orders. They delay each packet at output until the system delay upper bound is reached.

Each packet is time shifted by the same offset before departing, thus preserving the arrival order. Nonetheless, the

delay equalization method suffers from a huge penalty in magnifying the average delay. It is shown in our prototype

simulations that even the latest adaptive resequencer increases the average delay nearly 10 times to about 10 ms. A

route passing through five such routers will lead to at least 50 ms average delay, almost violating the QoS

requirement for delay-sensitive applications. To avoid the packet out-of-order, another choice is to use flow-based

load-balancing algorithms. They dispatch packets in the same flow to a fixed switching path by hashing its 5-tuple to

path ID.

II RELATED WORK

A basic timestamp-based resequencer was proposed by Turner to deal with the cell out-of-order issue, when cells

within a virtual circuit are allowed to take different paths in ATM switching systems. In each scheduling, the

resequencer implements a smart contention resolution mechanism to select the oldest cell and then compares its age

with a predefined threshold equal to the system delay upper bound. If the selected cell exceeds this age threshold, it

will be sent without disturbing cell orders since all previously arrived cells have left the system. Henrion improved

the timestamp-based resequencer by introducing time-wheel-like hardware which does not need to compare cells’

timestamps at output. It maintains an array of D pointer lists, where D is larger than delay upper bound at system

measured by timeslots. Each pointer at the list stores location of a cell waiting for resequencing. At timeslot t, the

pointer list at slot t modulo D is linked to the tail of the output cell list and removed from the array. After that,

pointers of arrival cells at timeslot t are linked together and stored in this empty slot (t modulo D) of the array. This

approach delays every cell by fixed D timeslots with O(1) complexity and strictly guarantees cell orders. Fixed-

threshold timestamp-based resequencers work well for ATM switching systems where traffic is well defined and cell

delay is moderate. However, in transition to an IP network, traffic becomes rather bursty, introducing a higher age

threshold on these resequencers and equalizing cell delay to undesirable level. To cope with the traffic in the worst

case, Turner proposed an adaptive resequencer that dynamically adjusts threshold ac-cording to a real-time delay

bound. Trace-driven simulations show that the resequencer performs well better than the fixed-threshold one.

Another kind of resequencer uses sequence number instead of timestamp. Cells with the same priority from one

input to one output are numbered sequentially at their arrivals. At the output, an expected sequence number is

maintained for all the packets in the same flow. Only the cells with an expected sequence can be sent after reaching

output, thus preserving cell order. Predefined path scheduling protocol known by both input and output, such as

Round- Robin (RR), can be employed to avoid attaching a sequence number to each cell. Resequencers using VIQ

can be categorized in this class. Resequencing techniques are also studied in designing popular MPS. This approach

International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.3, Issue No.3, March 2014 ISSN-2319-8354(E)

172 | P a g e

www.ijarse.com

does not disorder cells but suffers from huge communication complexity in sharing information among all the

input and outputs .This approach can be categorized into timestamp-based solution. Later in , by setting the

configurations of LBvN’s first and second stages to symmetrical patterns, each input and output is connected to each

Virtual Output Queue (VOQ) between the two stages (called mailbox) in period. Each newly arrived flow is

assigned to the NP with the lightest load. The major bottleneck of this method is to maintain a per-flow context

table, which reaches up to a million entries at an OC 768c port. The unique features of HRW lie in its graceful

dealing with server failures, and it supports load balancing across heterogeneous servers by introducing the scaling

vector. In developed methods to detect NP’s overload and optimally adjust a scaling vector to reshape flow

distribution. However, flow remapping has negative impact on increasing packet out-of-order probability.

 III FLOW SLICE

 The traces are collected at separate locations from the network core to edge/access points; hence, the traces

represent comprehensive Internet traffic behaviors. Each data set records consecutive packet headers (TCP/IP)

during an observation period of 1-10 min.

The original 5-tuple at each header is remapped, using the longest prefix preserving mapping, to new 5-tuple address

spaces, but they still retain the original flow-level characteristics. The timestamp at each packet header has a

resolution of at least 1 microsecond.

Fig:1 Flow-Slice Packet Count

 Flow Slice

 A flow slice is a sequence of packets in a flow, where every intraflow interval between two consecutive packets is

smaller than or equal to a slicing threshold . Flow slices can be seen as miniflows created by cutting off every

intraflow interval larger than . we depict the Cumulative Distribution Functions (C.D.F) of intraflow intervals in our

traces.Most of the traces have more than 50 percent of their intervals larger than 1 ms, and more than 40 percent are

larger than 4 ms. Two exceptions.

International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.3, Issue No.3, March 2014 ISSN-2319-8354(E)

173 | P a g e

www.ijarse.com

Properties

 The flow-slice characteristics are investigated at different slicing thresholds between 100 s-200 ms. Compared with

the original flow, which is equivalent to flow slice with a slicing threshold of 2 s (set to flow time-out value), three

flow-slice specific properties are observed in all traces.

 Property 1 : Small Size:

 Both the average packet count (FC) and the average size (FS) of flow slice are much smaller than those of the

original flow.

 Property 2 : Light-Tailed Size

 Distribution :Flow-slice packet count/size distributions are light tailed while it is well-known that original flow-size

distribution is heavy tailed.

 Property 3 : Fewer Active Flow Slice:

The active flow-slice number is 1-2 magnitudes smaller than that of active flow.

 IV PROBLEM

The packet-based solutions are advocated where traffic is dispatched packet by packet to optimally balance the load.

However, packets in the same flow may be forwarded in separate paths and experience different delays, thus

violating the intraflow packet ordering requirement. A straightforward solution is to use an explicit resequencer at

each output to restore packet orders. In timestamp-based resequencers are developed. They delay each packet at

output until the system delay upper bound is reached. Each packet is time shifted by the same offset before

departing, thus preserving the arrival order. Nonetheless, the delay equalization method suffers from a huge penalty

in magnifying the average delay. To avoid the packet out-of-order, another choice is to use flow-based load

balancing algorithms. They dispatch packets in the same flow to a fixed switching path by hashing its 5-tuple to

path ID.

Problems:

1. High load balance

2. Delay delivered process

3. More waiting time

V IMPLEMENTATION

The major implementation cost introduced by FS is that of hash table maintaining an active flow-slice context. The

size of this hash table is a trade-off ,First a large hash table reduces hash collision probability. Here, hash collision

is defined as the situation when more than one flow slices are hashed into the same entry, which degrades load-

balancing uniformity; Second a small hash table is desirable as the table is accessed in each load-balancing operation

and on-chip SRAM with relatively small size allows higher access speed. We calculate this trade-off in a Dual Hash

Table (DHT) approach .Assume a hash collision probability below 0.5 percent as negligible, where only one flow

International Journal of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.3, Issue No.3, March 2014 ISSN-2319-8354(E)

174 | P a g e

www.ijarse.com

slice out of 200 is not load balanced independently. As each FS load-balancing operation only needs one query at

the hash table, O(1) timing complexity is also achieved.

VI CONCLUSION AND FUTURE WORK

A Novel load-balancing scheme, namely, Flow Slice, based on the fact that the intraflow packet interval is often, say

in 40-50 percent, larger than the delay upper bound at MPS. Due to three positive properties of flow slice, our

scheme achieves good load-balancing uniformity with little hardware overhead and O(1) timing complexity.The FS

scheme can achieve optimal performance while keeping the intraflow packet out-of-order probability negligible

(below 10
-6

), given an internal speedup up to two. If this delay is independent for intraflow packets and larger than

the slicing threshold, the slicing probability will be about 0.5 and the average flow-slice packet count will be

approximately two, coinciding with our trace observations. Actually, if only the slicing threshold is larger than the

delay variation bound at all switching paths, packet order will be undisturbed. Under bursty input traffic, the delay at

all switching paths may increase synchronously, leaving its delay variation bound nearly unchanged. The FS scheme

is validated in switches without class-based queues. As QoS provisioning is also critical in switch designs, one of

our future works will be studying FS performance under QoS conditions.

REFERENCES

[1] Cisco CRS-1, http://www.cisco.com/go/crs/, 2011.

[2] Real Traces from NLANR, http://pma.nlanr.net/, 2010.

[3] Vitesse Intelligent Switch Fabrics, http://www.vitesse.com, 2011.

[4] A. Aslam and K. Christensen, “Parallel Packet Switching Using Multiplexors with Virtual Input Queues,” Proc.

Ann. IEEE Conf. Local Computer Networks (LCN), pp. 270-277, 2002.

[5] J. Bennett, C. Partridge, and N. Shectman, “Packet Reordering Is Not Pathological Network Behavior,”

IEEE/ACM Trans. Networking, vol. 7, no. 6, pp. 789-798, Dec. 1999.

[6] N. Brownlee and K. Claffy, “Understanding Internet Traffic Streams: Dragonflies and Tortoises,” IEEE Comm.

Magazine, vol. 40, no. 10, pp. 110-117, Oct. 2002.

[7] Z. Cao, Z. Wang, and E. Zegura, “Performance of Hashing-Based Schemes for Internet Load Balancing,” Proc.

IEEE INFOCOM, pp. 332-341, 2000.

[8] L. Carter and M. Wegman, “Universal Classes of Hashing Functions,” J. Computer and System Sciences, vol.

18, no. 2, pp. 143-154, 1979.

[9] C.S. Chang, D.S. Lee, and Y.S. Jou, “Load Balanced Birkhoff-von Neumann Switch, Part II: Multi-Stage

Buffering,” Computer Comm., vol. 25, pp. 623-634, 2002.

[10] C.S. Chang, D.S. Lee, and Y.S. Jou, “Load Balanced Birkhoff-von Neumann Switches, Part I: One-Stage

Buffering,” Computer Comm., vol. 25, pp. 611-622, 2002.

