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 ABSTRACT 

The energy momentum tensor of generalized fields of dyons and energy momentum conservation laws of dyons has 

been developed in simple, compact and consistent manner. We have obtained the momentum operator, Hamiltonian, 

Poynting vector and Poynting theorem for generalized fields of dyons in a simple, unique and consistent way. 
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I   INTRODUCTION 

The concept of the energy-momentum tensor in classical field theory has a long history, especially in Einstein’s 

theory of gravity [1]. The energy-momentum tensor combines the densities and flux densities of energy and 

momentum of the fields into one single object. The problem of giving a concise definition of this object able to 

provide the physically correct answer under all circumstances, for an arbitrary Lagrangian field theory on an 

arbitrary space-time background, has puzzled physicists for decades. The classical field theory with space-time 

translation invariance has a conserved energy-momentum tensor [1, 2]. The classical Lagrangian in constructing the 

energy-momentum tensor, like the canonical energy-momentum tensor was noticed long ago. The question is based 

on the Noethern theorem, according to which a field theory with space-time translation invariance has a conserved 

energy-momentum tensor. Belinfante [1, 2] and Rosenfield [3] who, in particular developed this strategy for Lorentz 

invariant field theories in flat Minkowski space-time to provide a symmetric energy-momentum tensor which, in the 

case of electrodynamics, is also gauge invariant and gives the physically correct expressions for the energy density 

and energy flux density i.e. Poynting vector as well as the momentum density and momentum flux density of the 

electromagnetic field. Callan et. al. [4] and Deser [5] proposed additional terms to define a energy-momentum tensor 

that, for dilatation invariant scalar field theories, is also traceless. The classical Lagrangian in constructing the 

energy-momentum tensor, like the canonical energy-momentum tensor was noticed long ago. The question is based 

on the Noethern theorem, according to which a field theory with space-time translation invariance has a conserved 

energy-momentum tensor. Gotay and Marsden [6], which also provides an extensive list of references witnessing the 

long and puzzling history of the subject, is an exception. Their approach is perhaps the first systematic attempt to 

tackle the problem from a truly geometric point of view. In a classical field theories on arbitrary space-time 
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manifolds. Generically, space-time manifolds do not admit any isometrics or conformal isometrics at all, so there is 

no direct analogue of space-time translations, Lorentz transformations, nor are there any conserved quantities in the 

usual sense. The ordinary conservation law 0 
T   for the energy-momentum tensor on flat space-time must 

be replaced by the covariant conservation law 0 
T   for its counterpart on curved space-time. The basic 

idea introduced by Gotay and Marsden [6], worked out in detail in using the modern geometric approach to general 

first order Lagrangian field theories and leading to an an improved energy-momentum tensor which is both 

symmetric and gauge invariant. The energy-momentum tensor is a tensor quantity in physics that describes the 

density and flux of energy and momentum in space-time, generalizing the stress tensor of Newtonian physics [7]. It 

is an attribute of matter, radiation, and non-gravitational force fields. The energy-momentum tensor is the source of 

the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a 

field in Newtonian gravity [1, 2]. The energy-momentum tensor is the conserved Noethern current associated with 

space-time translations. When gravity is negligible and using a Cartesian coordinate system for space-time, the 

divergence of the non-gravitational energy-momentum tensor will be zero. In other words, non-gravitational energy 

and momentum are conserved [8], [9], [10]. In this paper, the energy momentum tensor of generalized fields of 

dyons and energy momentum conservation laws are discussed consistently for dyons. Here we have also discussed 

the momentum operator, Hamiltonian and Poynting vector for generalized electromagnetic fields in a manifest and 

consistent way. 

II ENERGY MOMENTUM TENSOR 

The energy momentum tensor is a tensor quantity in physics that describes the density and flux of energy and 

momentum in space-time, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, 

and non-gravitational force fields. The energy momentum tensor is the source of the gravitational field in the 

Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity. 

The energy momentum tensor involves the use of super-scripted variables which are not exponents. If the 

components of the position four vector are given by tx 0
, xx 1

, yx 2
, zx 3

. The energy momentum 

tensor is defined as the tensor 
T of rank two that gives the flux of the 

th  component of the momentum vector 

across a surface with constant 
x  coordinate. In the theory of relativity, this momentum vector is taken as the four-

momentum. In general relativity, the energy momentum tensor is symmetric [7] 

                                                                         ; TT                                                        (1) 

 The energy momentum tensor is of rank two; its components can be displayed in matrix form 
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                                                           ;

33323130

23222120

13121110

03020100























TTTT

TTTT

TTTT

TTTT

T 
                                  (2) 

 The time component is the density of relativistic mass, i.e. the energy density divided by the speed of light squared 

[7, 8]. It is of special interest because it has a simple physical interpretation. In the case of a perfect fluid this 

component is 

                                                                 ;00 T                                                                    (3) 

 For an electromagnetic field in otherwise empty space this component is given by 

                                                                 ;2200 HET                                                         (4) 

 Where E and H are the electric and magnetic fields, respectively. The energy momentum tensor is the conserved 

Noethern current associated with space-time translations. When gravity is negligible and using a Cartesian 

coordinate system for space-time, the divergence of the non-gravitational energy momentum will be zero. In other 

words, non-gravitational energy and momentum are conserved 

                                                         ;0,  




 TT                                                   (5) 

 In free space and flat space-time, the electromagnetic energy momentum tensor is given by [9, 10] 

                                                                ;
4

1








 







  FFFFT                          (6) 

where 
F  is the electromagnetic tensor. This expression is when using a metric of signature (-, +, +, +). If using 

the metric with signature (+, - , - ,-), the expression for 
T   will have opposite sign.  

T  explicitly in matrix 

form [9, 10] 

                                                    

 

;

33323130

23222120

22



























TTTT

TTTT

S

SSSHE

T xxxxxxx

yyx

  (7)                                    

Where 
  is the Minkowski metric tensor of metric signature (-,+,+,+),  Poynting vector becomes 



International Journal Of Advance Research In Science And Engineering            http://www.ijarse.com  

IJARSE, Vol. No.2, Issue No.12, December, 2013                                               ISSN-2319-8354(E)  

135 | P a g e  

www.ijarse.com 

                                                                         ;HES


  

                                                                            .
2

1 22

ijjijiij BEBBEE                                   (8) 

is the Maxwell stress tensor. The flux of electromagnetic energy density is represents as [7, 8] 

                                                                      ;
2

1 22 HEuem                                                                 (9)                 

 

III ENERGY MOMENTUM TENSOR OF DYONS 

The Lagrangian of generalized electromagnetic field for a minimally coupled source of electric and magnetic 

charges as [11] 

                                            ;
4

1

4

1
L )()( ge jgBjeAMMFF 










                               (10) 

We may now define the energy momentum tensor for generalized electromagnetic fields of dyons as [12] 

                                           
 

 
 

;
~

L
B

L
B

A

L
AT















 








                                        (11)  

Where the first part of right hand side of equation (11) appears due to the contribution of electric four-potential 

 A  so that we may calculate the value of 
  A

L




  from the Lagrangian equation (10) as 

                                 
  ;

4

1










FAA
A

FF

A

L


















                            (12)                

Similarly, the second part of equation (11) appears due to the contribution of magnetic four-potential  B  and 

accordingly we get  
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                               
  .

4

1










MBB
B

MM

B

L


















                                     (13) 

 

Inserting equations (12) and (13) into equation (11), we get  

                                   

   

;
4

1

4

1

~

)()(













ge
jgBjeAFFFF

MBFAT





















                                      (14)     

Which is not symmetric in the indices , . To make it symmetric one must add another appropriate rank two tensor 

which also obeys the same conservation law. So, the equation (14) reduces to  

                                 

   

.
4

1

4

1

~

)()(













ge
jgBjeAFFFF

MBFAT



















                                         (15) 

Now adding the following new tensor, 

                                      ;
~ 





 MBFAS                                                                           (16)   

With equation (16), we get the following expression for the energy momentum tensor of generalized 

electromagnetic fields of dyons as [12] 

              
.

4

1

4

1

~~

)()(













ge
jgBjeAFFFFMMFFT

STT
























          (17) 

Thus equation (17) provides the field equations associated respectively with the dynamics of electric and magnetic 

charges of dyons after taking care the usual method of variations with respect to potential. Equation (17) may further 

be decomposed to  

                                        

   

;
4

1

4

1

~

)()(













ge
jgBjeAMMFF

MBFAT



















                           (18)  
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and 

                                                      .
~ 





 MBFAS                                                        (19)                                  

Hence we may write the co variant derivative of energy momentum tensor (17) as [12]  

    

    
       

       

       

   

    .
2

1

2

1

22
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1

2

1

4

1

4

1

)()(

)()(





















































































 

MMFF

MBFA

MBMBFAFA

jBjAMMFF

MBMBFAFA

MBFA

jgBjeAMMFFMBFAT

ge

ge























 (20) 

If we substitute 

                                              

   

   ;
2

1

2

1

;
2

1

2

1





BBBBB

AAAAA





                                      (21) 

into equation (20), we get 

       

;0

2

1

2

1

2

1

2

1

,

,

























TT

MMFFMMFFTT
                  (22) 

Which represents the continuity equation of energy momentum tensor of dyonic fields. Let us write the energy 

momentum tensor of dyons in an alternative form as [12] - [20] 

                                           
;

4

1

4

1 )()(












ge
jgBjeAFFFF

MMFFT





















                             (23) 

Where  
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                                                          .

1000

0100

0010

0001


























                                                            (24) 

Equation (23) may further be decomposed to momentum and energy operates as  

                                              ;
4

1

4

1 )()(0

00













ge

o

jgBjeAMMFF

MMFFT


















            (25)                                     

.
4

1

4

1 )()(000000 ge

i

i

i

i jeBjeAMMFFMMFFT 





                                        (26) 

For i=1, we may write  

                                       ;220

1

010

1

01 uHEHHEEMMFF                            (27)                  

where 
22 HEu   is known as energy density of the generalized electromagnetic field of  

dyons [12] - [20].  So, equation (26) reduces to [12] 

                                 ;
4

1

4

1 )()(2200 ge
jgBjeAMMFFHET 





                     (28) 

If we put 0  and 3  in equation (23) we get 

                                          ;
030303





 MMFFT                                                                        (29)                                                                                 

  Where 

                                           

.

;

0

2

320

1

3103

0

2

320

1

3103

MMMMMM

FFFFFF











                                                                   (30) 

 Then equation (29) becomes, 
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           

   .2203

12122112

03

21122112

03

HEHEEHT

EHHEEHEHT

HEHEEHEHT








                             (31) 

Where  HEST i

i


 20
  is known as Poynting vector for dyons showing that 

iT 0
  is proportional to the 

thi  

component of Poynting vector  HES


 2  . As such the conservation law becomes 

                                                                   ;0 
T                                                                                     (32)      

 where  

                                               ;00000 



 i

iTT
t

T 
  ( 3,2,1i )                                                    (33) 

Substituting the value of 
00T  and 

iT 0
  into equation (33), we get 

                          ;0
4

1

4

1 )()(22 












SjgBjeAMMFFHE

t

ge








                 

 which can further be reduced to 

                                                                 .0



S

t

w 
                                                                                   (34) 

Equation (34) represents the Poynting Theorem for generalized fields of dyons. 

IV CONCLUSION 

The Lagrangian density equation (10) of generalized electromagnetic field for a minimally coupled source of electric 

and magnetic charges in abelian gauge. We have discussed the energy momentum tensor of dyons which is given by 

equation (11) and its further consequences. It is shown that the energy momentum tensor equation (11) contains the 

contribution of electric and magnetic four-potential respectively giving rise the variation of Lagrangian in equations 

(12) and (13). Inserting equations (12) and (13) into equation (11) we have obtained the general expression (14) for 

energy-momentum tensor dyons and it is shown that the expression equation (14) is no more symmetric and to make 

it symmetric we need the rank two tensor. Accordingly the equation (14) has been converted to rank two tensor by 

expression equation (15) and it is concluded that the energy momentum tensor will became symmetric unless and 

until we add an extra term given by equation (16). As such we have obtained symmetric term energy momentum 



International Journal Of Advance Research In Science And Engineering            http://www.ijarse.com  

IJARSE, Vol. No.2, Issue No.12, December, 2013                                               ISSN-2319-8354(E)  

140 | P a g e  

www.ijarse.com 

tensor for generalized fields of dyons equation (17). It is concluded that the symmetric energy momentum tensor 

equation (17) of dyons provides the field equation of dyons as the combination of field equations respectively due to 

the dynamics of electric and magnetic charges after taking care the usual method of variation. In order to obtain the 

energy momentum conservation laws we have decomposed the equation (17) of energy momentum tensor of dyons 

in terms of equations (18) and (19). It is shown by equation (22) which is obtained by using equations (20) and (21) 

that the covariant derivative of energy momentum tensor is vanishing and thus leads the law of energy-momentum 

conservation. Alternatively we have obtained the energy and momentum components of energy momentum tensors 

given by equation (25) and (26) which is further expanded in terms of energy and momentum densities respectively 

given by equations (28) and (31). Equation (31) describes the Poynting vector while the conservation of work 

energy theorem is expressed by equation (32). Thus the Poynting vector is nothing but the energy flux or the 

momentum of radiation flowing into or out of a volume. This leads to an increase or decrease in energy of radiation. 

But in the case of generalized electromagnetic fields of dyons not only the energy is conserved but momentum is 

also conserved. This shows that the rate of change of total momentum in a volume is because of “momentum flux 

flowing in and out of the system”. The conservation law of energy momentum tensor is described as equation (32). 

As such equation (34) represents the Poynting theorem for generalized fields of dyons. 
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