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ABSTRACT

The energy momentum tensor of generalized fields of dyons and energy. momentum conservation laws ofidyons has
been developed in simple, compact and consistent manner. We hayesobtained the momentum, operator, Hamiltonian,

Poynting vector and Poynting theorem for generalized fields of dyons in a simple, unique and consistent way.
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I INTRODUCTION

The concept of the energy-momentum tersor in classical field theory has a long history, especially in Einstein’s
theory of gravity [1]. The energy-momentum tensoreombines-the densities and flux densities of energy and
momentum of the fields into one single object. The prablem of giving a concise definition of this object able to
provide the physically correct answer,under all circumstancesyfor an arbitrary Lagrangian field theory on an
arbitrary space-time background, has puzzlediphysicists forjdecades. The classical field theory with space-time
translation invariancefhas a conservedienergy-momentum‘tensor [1, 2]. The classical Lagrangian in constructing the
energy-momentum-tensor, like the cangnical energy-momentum tensor was noticed long ago. The question is based
on the Noethern theorem, according to which a field theory with space-time translation invariance has a conserved
energy-momentum tensor. Belinfante [1, 2] and Rosenfield [3] who, in particular developed this strategy for Lorentz
invafiant figlditheories in flat Minkewski Space-time to provide a symmetric energy-momentum tensor which, in the
case of electrodynamics, is also gauge invariant and gives the physically correct expressions for the energy density
and energy flux density. i.e. Poynting vector as well as the momentum density and momentum flux density of the
electromagnetic field. Callan’et. al. [4] and Deser [5] proposed additional terms to define a energy-momentum tensor
that, for dilatation invariant scalar field theories, is also traceless. The classical Lagrangian in constructing the
energy-momentum tensor, like the canonical energy-momentum tensor was noticed long ago. The question is based
on the Noethern theorem, according to which a field theory with space-time translation invariance has a conserved
energy-momentum tensor. Gotay and Marsden [6], which also provides an extensive list of references witnessing the
long and puzzling history of the subject, is an exception. Their approach is perhaps the first systematic attempt to

tackle the problem from a truly geometric point of view. In a classical field theories on arbitrary space-time
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manifolds. Generically, space-time manifolds do not admit any isometrics or conformal isometrics at all, so there is

no direct analogue of space-time translations, Lorentz transformations, nor are there any conserved quantities in the

usual sense. The ordinary conservation law ayT’” =0 for the energy-momentum tensor on flat space-time must

be replaced by the covariant conservation law V ﬂT” =0 for its counterpart on curved space-time. The basic

idea introduced by Gotay and Marsden [6], worked out in detail in using the modern geometric approach to general
first order Lagrangian field theories and leading to an an improved energy-momeéntum tensor which is both
symmetric and gauge invariant. The energy-momentum tensor is a tensor quantity in physics that describes the
density and flux of energy and momentum in space-time, generalizing the stress tensor of Newtonian physics [7]. It
is an attribute of matter, radiation, and non-gravitational force fields. The energy=momentum tensor is the source of
the gravitational field in the Einstein field equations of general relativity,just as mass‘density is the source of such a
field in Newtonian gravity [1, 2]. The energy-momentum tensopis the conserved Noethern current associated with
space-time translations. When gravity is negligible and using\a, Cartesian coordinate system for space-time, the
divergence of the non-gravitational energy-momentum tensor willbe zero. In‘other-words, non-gravitational energy
and momentum are conserved [8], [9], [10]. In thisgpaper, the energy momentum tensor of generalized fields of
dyons and energy momentum conservation lawsfare discussed consistentlysfor dyonst"Here we have also discussed
the momentum operator, Hamiltonian and Roynting vector for generalized electromagnetic fields in a manifest and

consistent way.
I ENERGY MOMENTUMIENSOR

The energy momentum tensor is @\tensor quantity in physics that describes the density and flux of energy and
momentum in space-time, generalizing the stfess tensorof'Newtonian physics. It is an attribute of matter, radiation,
and non-gravitational force fields. Thedenergy momentum tensor is the source of the gravitational field in the
Einstein field equations ofigeneral relativity, just as mass density is the source of such a field in Newtonian gravity.

The energy momentum tensor, involves| the” use of super-scripted variables which are not exponents. If the

components of the position four vector are given by x° =t,X1 =X, X% = Y, x}=z. The energy momentum

tensor is defined‘asithe tensori of rank two that gives the flux of the a® component of the momentum vector

across a surface with constant”X” coordinate. In the theory of relativity, this momentum vector is taken as the four-

momentum. In general relativity, the energy momentum tensor is symmetric [7]
T =T, (1)

The energy momentum tensor is of rank two; its components can be displayed in matrix form
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TOO TOl T02 T03

TlO Tll T12 T13 -
= T20 T21 T22 T23 ’

T30 T31 T32 T33

T 2

The time component is the density of relativistic mass, i.e. the energy density divided by the speed of light squared

[7, 8]. It is of special interest because it has a simple physical interpretation. In of a perfect fluid this

component is

TOO =p1

In free space and flat,space-time, the y momentum tensor is given by [9, 10]

FoF,” —%n””FaﬂF“ﬂ}; (©)

where F ensor. This expression is when using a metric of signature (-, +, +, +). If using

the metric with , the expression for T#" will have opposite sign. T*" explicitly in matrix

form [9, 10]

(E2+H2) s, s, s,

- O-XX - O-XX - O-XX . (7)
T 20 T 21 T 22 T 23 !
T 30 T 31 T 32 T 33

Where 17*" is the Minkowski metric tensor of metric signature (-,+,+,+), Poynting vector becomes
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S=ExH;
1
O'ij=EiEj+BiBj—§(E2+BZ " ®)

is the Maxwell stress tensor. The flux of electromagnetic energy density is represents as [7, 8]

u =%(E2+H2) ©)

em

11 ENERGY MOMENTUM TENSOR OF DYONS

The Lagrangian of generalized electromagnetic field for a ce of ic and magnetic

charges as [11]

(10)

(11)

appears due to the contribution of electric four-potential

from the Lagrangian equation (10) as

]:—(a”A”—apAV):—FV”; (12)

Similarly, the second part of equation (11) appears due to the contribution of magnetic four-potential {Bﬂ} and

accordingly we get
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Inserting equations (12) and (13) into equation (11), we get

Tﬂv = _(a/t Ap )F - (au Bp )M ”
(14)
J{% PP +%FGPFGP —eA,j,” ~g

Which is not symmetric in the indices £,V . To make it symmetfic one must add another app ank two tensor

which also obeys the same conservation law. So, the equation (1

Te =—(0,A F7 (0

(15)

(16)

1 (1)

v 1 oF % j j
p/l +77/" |:ZFO_pF » +Z Fo-pF » _eAO'JO'(e) _gBO'JO'(g)i|

charges of dyons after taking care the usual method of variations with respect to potential. Equation (17) may further

be decomposed to

fﬂV:—(avAp)F”p—(ava)Mﬂp
(18)
+n*" EFU F +1MG \V/ e —eAgjg(e) —gBaja(g) ,
4 " 47
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and
S« =(0,A F*+(,B, M. (19)
Hence we may write the co variant derivative of energy momentum tensor (17) as [12]

0,7 =a,[-(6,A JF*-(5,8,M "”]+8ﬂé‘v”[%F@F"”+%MJpM“”—e
+o,0,A F+(0,B,M)
-—6,0,A F*—(0,A )0,F*-(6,0,B,M* (5,8, )0, M*

vZu'p viup
1

+%(a = )F“P+E(6VMGP)M » _20,(Aj,%)-20,(B, j,¢

'@—gﬂme}

JF., (20)
+a (0,A )+, A, F“+o (0,8 M+ B M*
-—6,0,A F*—(,0,B,M*

1 1 ;
+E(a FF "+E(6VMGP)M |

v op

If we substitute

1)

M, M W’+%(a F )F””+%(6VMW)M e

v ouv

(22)

Which represents the ty equation of energy momentum tensor of dyonic fields. Let us write the energy

momentum tensor of dyans in an alternative form as [12] - [20]

TH =—F¥F“~-M"M *

@)
+n’”& FopF 7 +%FJ,JF"’J —eA, j, " —gBaJ},(g’J;

Where
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1 0 0 O
o (010 0 28)
T 7o 0o -1 of
0 0 0 -1

Equation (23) may further be decomposed to momentum and energy operates as

T =—F”F,°'-M"*M °

v 1 oy 1 oy (e
+n° (ZFUPF P+ M,M ? —eA_j. " (25)
00 0i-0 0i 0 1 of 1 o
T7=—F"F -M"M, +—Fpr+—M M” —e (26)
4 of 4 op
For i=1, we may write
@7)
where U = E® +H? is known as energy density of
dyons [12] - [20]. So,
(28)
If we put
(29)
Where
F3P Fpo — F31F10 + F32F20; (30)
M 3pMp0 — M 31M10 + M 32M20,
Then equation (29) becomes,
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T%=—(H, N~ E)-(-H.)N-E,)- (- B, -H,)-(E.X-H,)
T%®=H,E, ~H,E, - E,H, + H,E, (31)

T03=2(H.E—E~H)=2(EXH)

Where T% = S, = Z(E X I:|) is known as Poynting vector for dyons showing that T is proportional to the i

component of Poynting vector S= Z(E X H) . As such the conservation law becom

o0,T*" =0, (32)

where

0 .
OTY =—T%+V,T% =0 (33)
ot
Substituting the value of T and T” into equati
0 1
ZI(E2+H?)+=F,
ot 4
which can further be reduced t
(34)
Equation (34) represe Poynting orem for generalized fields of dyons.
IvVC
The Lagrangi i i of generalized electromagnetic field for a minimally coupled source of electric
and magnetic cha i uge. We have discussed the energy momentum tensor of dyons which is given by

equation (11) and its onsequences. It is shown that the energy momentum tensor equation (11) contains the

contribution of electric and magnetic four-potential respectively giving rise the variation of Lagrangian in equations
(12) and (13). Inserting equations (12) and (13) into equation (11) we have obtained the general expression (14) for
energy-momentum tensor dyons and it is shown that the expression equation (14) is no more symmetric and to make
it symmetric we need the rank two tensor. Accordingly the equation (14) has been converted to rank two tensor by
expression equation (15) and it is concluded that the energy momentum tensor will became symmetric unless and

until we add an extra term given by equation (16). As such we have obtained symmetric term energy momentum
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tensor for generalized fields of dyons equation (17). It is concluded that the symmetric energy momentum tensor
equation (17) of dyons provides the field equation of dyons as the combination of field equations respectively due to
the dynamics of electric and magnetic charges after taking care the usual method of variation. In order to obtain the
energy momentum conservation laws we have decomposed the equation (17) of energy momentum tensor of dyons
in terms of equations (18) and (19). It is shown by equation (22) which is obtained by using equations (20) and (21)
that the covariant derivative of energy momentum tensor is vanishing and thus leads the law of energy-momentum
conservation. Alternatively we have obtained the energy and momentum components of'energy momentum tensors
given by equation (25) and (26) which is further expanded in terms of energy andgnomentum densities respectively
given by equations (28) and (31). Equation (31) describes the Poynting ve€tor. while the jeenservation of work
energy theorem is expressed by equation (32). Thus the Poynting vector is nething but'the energy \flux or the
momentum of radiation flowing into or out of a volume. This leads to.anlincrease or decrease in energy of radiation.
But in the case of generalized electromagnetic fields of dyons pot only the ‘energy is conserved butémomentum is
also conserved. This shows that the rate of change of total momentum in a volume.is because of “momentum flux
flowing in and out of the system”. The conservation law of energy.momentum tensor IS,described as equation (32).

As such equation (34) represents the Poynting theoremiforgeneralized fields of dyons.
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