International Journal Of Advance Research In Science And Engineering http://www.ijarse.com
IJARSE, Vol. No.2, Issue No.12, December, 2013 ISSN-2319-8354(E)

ANDROID SECURING YOU

Mohd. Salman Khan" Abhishek Sharma?, Arpit Kansal®

!Assistant Professor, ABESIT Ghaziabad, (India)
23B.Tech IT, ABESIT Ghaziabad, (India)

ABSTRACT

Android is a software stack for mobile devices that includes an operating, system, middleware and key
applications. The Android provides the tools and APIs necessary,to begin developing applications on the
Android platform using programming language. Android is a widely“anticipated open seurce operating system
for mobile devices that provides a base operating system, an application middleware ‘layer, a dava software
development kit (SDK), and a collection of system applications. Androidghas @'unique security model, which
Jfocuses on putting the user in control of the device. Android devicesshowever, don’t all come from one place, the
open nature of the platform allows for proprietafy extensions and changes. This paper we should already be
Sfamiliar with Android’s basic architectureqand major ‘abstractions includingaglntents, Activities, Broadcast
Receivers, Services, Content Providers and Binder. As android is open source we should also have this code
available to us. Both the java and C code is criticalfor understanding how Android works, and is far more
detailed than any of the platform documentation.

I INTRODUCTION

Android has security features builtinto the operating system that significantly reduce the frequency and impact
of application’securityiissues. The system is designed so we can typically build applications with default system
and file permissions and avoid difficult,decisions about security. Android is a Linux based operating system
withdnative libraries programmed in C//'C++ and with enhanced security mechanisms tuned for a mobile
environment.»Android combines ©S features like efficient shared memory, preemptive multi-tasking, Unix user
identifiers (UIDs))and file goermissions with the type safe Java language and its familiar class library. The
resulting security“model is, much more like a multi-user server than the sandbox found on the J2ME or
Blackberry platforms.\Unlike in a desktop computer environment where a user’s applications all run as the same
UID, Android appliCations are individually soiled from each other. Android applications run in separate
processes under distinct UIDs each with distinct permissions. Programs can typically neither read nor write each
other’s data or code, and sharing data between applications must be done explicitly. The Android GUI
environment has some novel security features that help support this isolation. Android supports building
applications that use phone features while protecting users by minimizing the consequences of bugs and
malicious software. Android’s process isolation obviates the need for complicated policy configuration files for
sandboxes. This gives applications the flexibility to use native code without compromising Android’s security

or granting the application additional rights.

100 | Page
WWw.ijarse.com

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com
IJARSE, Vol. No.2, Issue No.12, December, 2013 ISSN-2319-8354(E)

Android permissions are rights given to applications to allow them to do things like take pictures, use the GPS
or make phone calls. When installed, applications are given a unique UID, and the application will always run
as that UID on that particular device. The UID of an application is used to protect its data and developers need
to be explicit about sharing data with other applications. Applications can entertain users with graphics, play
music, and launch other programs without special permissions. Malicious software is an unfortunate reality on
popular platforms, and through its features Android tries to minimize the impact of malware. However, even
unprivileged malware that gets installed on an Android device (perhaps by pretending to be a useful application)

can still temporarily wreck the user’s experience.

I ANDROID APPLICATIONS

The Android application framework forces a structure on developers. i ion for
execution—instead have entry point through its components. defined
data). One

component types depending on the component’s purpose (such as interfacing with a use

such example of android application is:-

Friend Tracker Application

Boot Receiver @

roadcast ReceiverService

Friend

o]

Friend Tracker

Control
Provider
Activity Control Provider

A Y

System Seve

Location
manager

System
Service

Boot. X N
Receiver

Start/StopRe, dN\Ite
Friend Tracker

Control

Friend
Provider

101 |Page
WWW.ijarse.com

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com
IJARSE, Vol. No.2, Issue No.12, December, 2013 ISSN-2319-8354(E)

11 ACTIVITY AND INTERACTION OF COMPONENTS

Activities start each other, possibly passing and returning values. Only one activity on the system has keyboard
and processing focus at a time; all others are suspended. In Figure 2, the interaction between components in the
FriendTracker and FriendViewer applications and with components in applications defined as part of the base
Android distribution. In each case, one component initiates communication with another. For simplicity, we call
this inter-component communication (ICC). The available ICC actions depend on the target component. Each
component type supports interaction specific to its type for example, when FriendViewer starts FriendMap, the
FriendMap activity appears on the screen. Service components support start, stop, and bind actions, so the
FriendTrackerControl activity, for instance, can start and stop the FriendTragker service that runs in the back-
ground. The bind action establishes a connection between components, allowingythe initiatorte execute RPCs
defined by the service. In our example, FriendTracker binds to the Ideation manageriin‘the system server.Once
bound, FriendTracker invokes methods to register a callback thatyprovides updates on thé phone’s
location.Broadcast receiver and content provider components/have unique forms of interactioh./CC targeted at
a broadcast receiver occurs as an intent sent (broadcast) either'explicitly to the component of,'more commonly,
to an action string the component sub-scribes to. For example, FriendReceiver subscribes to the developer-
defined “FRIEND NEAR” action string. FriefidTracker broadcasts an intent to Ahis action string when it
determines that the phone is near a friend; the system then starts FriendReceiver and displays a message to the
user. Content providers don’t use intents—rathet, theyreyad-dressed via.an authority string embedded in a
special content Uniform Resource Identifier (URI) of the “form™ content://<authority>/<table>/[<id>].
Components use this URI te,perform a SQL query<onya content provider, optionally including WHERE

conditions via the query API.

Friend Tracker App | Friend Viewer App |Contacts App

IO LI
— O]
T |

| I R

ICC Reference Monitor

Android Middleware

User: App-14 User: App-12 User: App-4

Friend Tracker Friend Viewer Contact

As Figure 3, Android protects applications and data through a combination of two enforcement mechanisms,

one at the system level and the other at the ICC level. ICC mediation defines the core security framework and

102 |Page
WWw.ijarse.com

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com
IJARSE, Vol. No.2, Issue No.12, December, 2013 ISSN-2319-8354(E)

is this article’s focus, but it builds on the guarantees provided by the underlying Linux system. In the general
case, each application runs as a unique user identity, which lets Android limit the potential damage of
programming flaws. ICC isn’t limited by user and process boundaries. In fact, all ICC occurs via an /0
control *command on a special device node. Because the file must be world readable and writable for proper
operation, the Linux system has no way of mediating ICC. Although user separation is straightforward and
easily understood, controlling ICC is much more subtle and warrants careful consideration.In its simplest
form, access to each component is restricted by assigning it an access permission label; this text string need
not be unique. Developers assign applications collections of permission labels. When a component initiates
ICC, the reference monitor looks at the permission labels assigned to its containingdpplication and—if the
target component’s access permission label is in that collection—allows ICC establishment to proceed. If the

label isn’t in the collection, establishment is denied even if the components ag€ in the same application.

IV ACCESS PERMISSION LOGIC

The developer assigns permission labels via the XML manifest file that accompanies everyfapplication
package. In doing so, the developer defines the application’s ‘securitypolicy—that is, assigning permission
labels to an application specifies its protection domain, whereas assigning permissions to the components in
an application specifies an access policy to pretect itsiresources. Because Androidés policy enforcement is
mandatory, as opposed todiscretionary, allpermission labels are set at install time and can’t change until the
application is reinstalled. However, despite its MAC properties,, Android’s permission label model only
restricts access to components and doesn’t currently provide information flow guarantees, such as in domain
type enforcement. Partially out of necessity and partially, for convenience, the Google developers who
designed Android incorporated‘severalirefinements to the basie security model, some of which have subtle

side effects and make its overall security difficultite.understand.

V BROADCASTINIENT PERMISSIONS

Components aren’t the onlyiresource that requires protection. In our example, the FriendTracker service
broadcasts an,intent to the FRIEND NEAR action string to indicate the phone is physically near a friend’s
location. Although this eventynatification lets the Friend-Viewer application update the user, it potentially
informs all installed ‘applications of the phone’s proximity. In this case, sending the unprotected intent is a
privacy risk. More generally, unprotected intent broadcasts can unintentionally leak information to explicitly
listening attackers. T6 combat this, the Android API for broadcasting intents optionally allows the developer to
specify a permission label to restrict access to the intent object. The access permission label assignment to a
broadcasted intent for example, sendBroadcast (intent, “perm. FRIEND NEAR?) restricts the set of applications
that can receive it (in this example, only to applications containing the “perm.FRIEND NEAR” per-mission
label). This lets the developer control how information is disseminated, but this refinement pushes an
application’s security poli-cy into its source code. The manifest file therefore doesn’t give the entire picture of

the application’s security.

103 | Page
WWw.ijarse.com

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com
IJARSE, Vol. No.2, Issue No.12, December, 2013 ISSN-2319-8354(E)

VI CONTENT PROVIDER PERMISSIONS

In our application, the Friend Provider content provider stores friends’ geographic coordinates. As a developer,
we want our application to be the only one to update the contents but for other applications to be able to read
them. Android allows such a security policy by modifying how access permissions are assigned to con-tent
providers—instead of using one permission label, the developer can assign both read and write permissions. If
the application performing a query with write side effects (INSERT, DELETE,UPDATE) doesn’t have the write
permission, the query is denied. The separate read and write permissions let the developer distinguish between
data users and interactions that affect the data’s integrity. Security-aware developers should define separate

readand write permissions, even if the distinction isn’t immediately apparent.

VII PERMISSION PROTECTION LEVELS

Early versions of the Android SDK let developers mark permission asapplication® ory‘system.” The default
application level meant that any application requesting thefpermission label would receive it Conversely,
system permission labels were granted only to applications installed ing/data/system (as opposed to /data/app,
which is independent of label assignment). The likely reason is that‘enly system applications should be able to
perform operations such as interfacing directlyfwith the, telephony API. The v0.9r1 SDK (August 2008)
extended the early model into four protectiofi levels for permission labelswithgthe meta information specified
in the manifest of the package defining the<permission. “Normal” permissions act like the old application
permissions and are granted to any application that requests themdin its manifest; “dangerous” permissions are
granted only after user confirmation. Similar to security ehecks in popular desktop operating systems such as
Microsoft Vista’s user account control (UAC), when an applieation is installed, the user sees a screen listing
short descriptions of requested dangerous:permissions along/with OK and Cancel buttons. Here, the user has the
opportunity to accept all permissiomrequests or deny the installation. “Signature” permissions are granted only
to applicationsfsigned, by the same developer key as the package defining the permission (application signing
became mandatory in the v0.9r1 SDK). Finally, “signature or system” permissions act like signature

permissions but exist for legacy compatibility with the older system permission type.

Normal Permissions for app features

whose consequences are minor like
VIBRATE which lets applications
vibrate the device. Suitable for
granting rights not generally of keen
interest to wusers, users can review

but may not be explicitly warned.

Dangerous Permissions like WRITE SETTINGS or
SEND SMS are dangerous as they could
be used to reconfigure the device or

incur tolls. Use this level to mark

permissions users will be interested

104 |Page
WWw.ijarse.com

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com
IJARSE, Vol. No.2, Issue No.12, December, 2013 ISSN-2319-8354(E)

in or potentially surprised by.
Android will warn users about the
need for these permissions on

install.

Signature These permissions can only be granted
to other applications signed with the
same key as this program. This allows
secure coordination without

publishing a public interface.

Signature Similar to Signature except that

programs on the system image also
qualify for access. This allows
programs on custom Android systems to
also get the permission.

protection is to help integrates

or System builds and won’t typically beN

by developers.

The new permission protection levels providé a means o i rs assign permission labels.

Signature permissions ensure that only the ork de

granting policies.Making a pe it/depends on the user understanding the security

implications.

UID. Typically on every user has a single UID and running any application launches runs that program

as the users UID. On Android the system gives every application, rather than every person, its own UID.
Android requires developers to sign their code.Android codesigning usually uses self-signed certificates, which
developers can generate without anyone else’s assistance or permission. One reason for code signing is to allow
developers to update their application without creating complicated interfaces and permissions. Applications
signed with the same key (and therefore by the same developer) can ask to run with the same UID. This allows
developers to upgrade or patch their software easily, including copying data from existing versions. The signing
is different than normal Jar or Authenticode signing however, as the actual identity of the developer isn’t

necessarily being validated by a third party to the de-vice’s user.

105|Page
WWW.ijarse.com

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com
IJARSE, Vol. No.2, Issue No.12, December, 2013 ISSN-2319-8354(E)

IX CONCLUSION

Applications need approval to do things their owner might object to, like sending SMS messages, using the
camera or accessing the owner’s contact database. Android uses manifest permissions to track what the
user allows applications to do. An application’s permission needs are expressed in its AndroidManifest.xml
and the user agrees to them upon install. When installing new software, users have a chance to think about
what they are doing and to decide to trust software based on re-views, the developer’s reputation, and the
permissions required. Permissions are sometimes called manifest permissions or Android permissions, to

distinguish them from file permissions. To be useful, permissions must be associat ith some goal that

the user understands. Once installed, an application’s permissions can’t be ¢ ed. By minimizing the

REFERENCES

[1] J.P. Anderson, Computer Security
1972.
[2] M.A. Harrison, W.L. Ruzzo, and J.D. % i rating Systems,” Comm. ACM vol.
19, no.8, 1976, pp. 461-471.

106 |Page
WWW.ijarse.com

