
International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.2, Issue No.11, November 2013 ISSN-2319-8354(E)

77 | P a g e
www.ijarse.com

DCO CALIBRATION OF MSP430F2618 ULTRA LOW

POWER MICROCONTROLLER

1
Divya,

2
Swati Chodhaury

1,2
EC, Raj Kumar Goel Institute of Engineering and Technology for Women

Ghaziabad/MTU, (India)

ABSTRACT

MSP430F2618 is a 16 bit microcontroller based on RISC system designed for ultralow power consumption and are

manufactured by TEXAS INSTRUMENTS. DCO is the most important component of MSP430F2618 which is to be

calibrated in order to control its oscillation frequency and ascertain its operational integrity. Oscillation frequency

of DCO is controlled using software (Code composite studio). We also studied that DCO can be calibrated by

tuning it to a more accurate external source.

I.INTRODUCTION

The MSP430 family of ultralow-power microcontrollers consists of several devices featuring different sets of

peripherals targeted for various applications. The architecture, combined with five low-power modes is optimized to

achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC

CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The DCO which is

calibrated allows wake-up from low-power modes to active mode in less than 1 µs.

The MSP430F261x and MSP430F241x series are microcontroller configurations with two built-in 16-bit timers, a

fast 12-bit A/D converter, a comparator, dual 12-bit D/A converters, four universal serial communication interface

(USCI) modules, DMA, and up to 64 I/O pins. The MSP430F241x devices are identical to the MSP430F261x

devices, with the exception that the DAC12 and the DMA modules are not implemented.

Sensor systems, industrial control applications, wireless communication system and hand-held meters are major

applications. The 12mmx12mm LQFP-64 package is also available as a non-magnetic package for application of

Medical imaging. Our prime focus here is digitally controlled oscillator (DCO) ,how it’s used as source and why

need calibration. It is necessary to calibrate DCOs before use to ensure their operational integrity and to know the

uncertainty of the frequencies of operation. Any oscillator, be it RC, LC or Crystal controlled, requires two basic

conditions to be met for it to operate at the desired frequency; its loop gain must be greater than unity and its loop

phase shift must be zero at that frequency (Barkhausen stability criterion).

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.2, Issue No.11, November 2013 ISSN-2319-8354(E)

78 | P a g e
www.ijarse.com

Modern system(Microcontroller based DCOs) usually use some form of digital frequency synthesis to generate their

VFO signal. Smaller designs, lack of moving parts, and the ease with which present frequencies can be stored and

manipulated in the digital computer that is usually embedded in the design for other purposes are major advantages.

Digital frequency synthesis relies on stable crystal controlled reference frequency sources. Crystal controlled

oscillators are more stable than inductively and capacitively controlled oscillators (VCOs). They tend to be more

stable, more repeatable, have fewer and lower harmonics and lower noise than all the alternatives in their cost-band.

II. MSP430 AND CLOCKING SYSTEM

MSP430 series of microcontroller has a flexible clocking system. Flexible clocking system helps this

microcontroller achieve it’s purpose of ultra low power application. The MSP430 MCU clock system has the ability

to enable and disable various clocks and oscillators which allow the device to enter various low-power modes

(LPMs). The flexible clocking system optimizes overall current consumption by only enabling the required clocks

when

 Fig-1.1 Multiple-Oscillator Clock System

Main Clock (MCLK) – CPU source that may be driven by the internal

Digitally Controlled Oscillator (DCO) up to 25 MHz or with external crystal.

Auxiliary Clock (ACLK) – Source for individual peripheral modules driven by the internal low-power oscillator or

external crystal.

Sub-Main Clock (SMCLK) – Source for faster individual peripheral

modules that may be driven by the internal DCO up to 25 MHz or with external crystal.

For the above clock signals the basic clock module+ msp430series microcontroller includes two, three or four clock

sources

LFXT1CLK: Low-frequency/high-frequency oscillator that can be used with low-frequency watch crystals or

external clock sources of 32768 Hz or with standard crystals, resonators, or external clock sources in the 400-kHz to

16-MHz range.

http://en.wikipedia.org/wiki/Digital_computer
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Crystal_oscillator

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.2, Issue No.11, November 2013 ISSN-2319-8354(E)

79 | P a g e
www.ijarse.com

XT2CLK: Optional high-frequency oscillator that can be used with standard crystals, resonators, or external clock

sources in the 400-kHz to 16-MHz range.

 DCOCLK: Internal digitally controlled oscillator (DCO).

VLOCLK: Internal very low power, low frequency oscillator with 12-kHz typical frequency

III. NEED FOR CALIBRATION

Running an MSP430 at lower voltages changes the frequency of the internal DCO. High frequency external crystals

have their own entire set of problems. Clock settings between chips are not transferable and setting the DCO and

BCS values for one chip doesn’t not result in the same frequency for another. Hence, every chip needs to be

calibrated to run at a custom frequency before running the actual code you’re trying to deploy.

IV. DCO CALIBRATION

DCO is the major component of MSP430. The frequency at which the DCO oscillates can be adjusted by setting the

DCO registers. In this way, the DCO can be tuned by incrementally changing the registers and comparing the

resultant frequency against a known frequency. When the speed of a slower clock source is known, such as a 32-kHz

watch crystal, the DCO speed can be adjusted until a specific number of DCO cycles occur in one cycle of the

slower clock.

To accomplish this, a Capture/Compare Register of Timer_A is initialized in Capture mode. In this mode, it captures

the value of Timer_A when a low-to-high transition occurs on an internal signal. In this case, the internal signal is

ACLK. When SMCLK is driving the timer, the captured value becomes the number of SMCLK cycles since the last

ACLK low-to-high transition. When the number of SMCLK cycles are known, the DCO can be adjusted and

measured again using same capture method previously outlined. In this way, the DCO can be tuned to a specific

multiple of the known ACLK frequency. For increased accuracy, the ACLK signal can be divided by eight to

increase granularity. This is known as dco calibration i.e. tuning it’s frequency to known much accurate clock source

(here watch crystal is used).

V.CONFIGURING THE DCO

Fig-2.1 How to Select The different Possible Frequencies Of DCO

http://1.bp.blogspot.com/_JbJyANPVYsA/TFHRDC-RKsI/AAAAAAAAEa4/w8qLbESXgQg/s1600/DCO_steps.jpg

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.2, Issue No.11, November 2013 ISSN-2319-8354(E)

80 | P a g e
www.ijarse.com

The MSP430's Digitally Controlled Oscillator is one of the most important peripherals to be able to manage. As it

requires no external parts and is controlled completely by software it's the easiest of the clock sources to configure.

The DCO (within the BCS+) is configured with two registers: DCOCTL and BCSCTL1. Look up the maps of these

two registers in the x2xx Family User's Guide, page 5-14.This image comes directly from the User's Guide. It

explains how to select the different possible frequencies for the DCO. The total range of frequencies is divided into

16 overlapping ranges. So Range 7's low end overlaps Range 6's high end, and Range 7's high end overlaps Range

8's low end. Make sense? Ok, each range is further subdivided into 8 possible Ok, each range is further subdivided

into 8 possible frequencies. If you plot all of these out, you get something similar to the above image, but with 16

lines instead of the three representative lines shown here. There are then 128 distinct frequencies available to the

DCO, with some overlap.

VI. USING THE DCO LIBRARY

It is often necessary to have the digitally controlled oscillator (DCO) of an MSP430 tuned to a specific frequency.

Simply setting the DCO register values to a constant value across all devices is not a method that can ensure

accurate results due to device variances. DCO must be tuned based on a known frequency in order to have accuracy.

This is done automatically using the FLL In 4xx devices. The purpose of the FLL is to keep the DCO running at a

certain multiple of ACLK. In 1xx and 2xx devices, which do not have the FLL, a similar tuning process can be

accomplished using software and timers.

VII. SAFETY FACTORS

Several safety measures have been added to the library in order to ensure reliable and safe use of the DCO library.

In order to prevent the library from becoming trapped in an infinite loop, a maximum number of 10,000loops are

allowed. If the desired frequency is not set after 10,000 iterations, the function returns 0xFF, in order to signify the

timeout has occurred. It should be noted that this timeout is loop count based and not time based. This means that a

timeout does not occur if no ACLK signal is present. On 2xx devices, the DCO speed should not exceed the

specified 16 MHz. As an additional safety factor,

2xx devices will not increment the DCO settings above the value given in the factory-calibrated 16-MHz register

settings. If this value is reached, the function exits, returning 0 02 to indicate the DCO is set to the fastest setting.

In order to ensure a more consistent time for setting the DCO, a tolerance has been built into the set DCO routine.

The routine exits if the measured DCO is exactly set to the desired multiplier or if the DCO speed shown.

Below is the basic program this program is a demonstration of setting the DCO to 2 MHz by tuning

it to a 32-kHz watch crystal.

After a delay to ensure the startup of the 32-kHz crystal, the function set DCO is called. This function takes one

parameter, an integer describing the desired frequency of the DCO. In order to tune the DCO, this routine divides

ACLK by eight, then increases or decreases the DCO settings until the number of DCO cycles per ACLK cycle is

equal to the number passed to the set DCO routine.

Put another way, the resultant DCO frequency is:

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.2, Issue No.11, November 2013 ISSN-2319-8354(E)

81 | P a g e
www.ijarse.com

DCO = parameter (32768/8)

#include <msp430x11x1.h>

#include "DCO Library.h"

void main(void)

{ volatile unsigned int I;

int result;

WDTCTL = WDTPW +WDTHOLD; // Stop Watchdog Timer

P1DIR |= 0x12; // P1.1 and P1.4 outputs

P1SEL |= 0x10; // P1.4 SMCLK output

P2DIR |= 0x01; // P2.0 output

P2SEL |= 0x01; // P2.0 ACLK output

for(I = 0; I < 0xFFFF; I++){} // delay for ACLK startup

result =TI_setDCO (TI_setDCO_2MHZ);

if(result == TI_DCO_SET_TO_SLOWEST) // returned result if DCO registers hit min

{

while(1); // trap the CPU if hit

}

else if(result ==TI_ DCO_SET_TO_FASTEST) // returned result if DCO registers hit max

{

while(1); // trap the CPU if hit

}

while(1); // trap the CPU if hit

}

else if(result == TI_DCO_TIMEOUT_ERROR) // result if DCO takes >10000 loops

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.2, Issue No.11, November 2013 ISSN-2319-8354(E)

82 | P a g e
www.ijarse.com

{

while(1); // trap the CPU if hit

}

while(1)

{

P1OUT |= 0x02; // P1.1 = 1

P1OUT &= ~0x02; // P1.1 = 0

}

}

The required dco frequency can be set by tuning it to watch crystal .In another direct and interesting way dco can be

tuned to specified frequency by using calibration registers calb1_--HZ and caldco—HZ located in the flash memory

provided by TI. directly using it to get desired DCO frequency.

Below is the program to do so:

//**

// MSP430x26x Demo - Basic Clock, Output Buffered SMCLK, ACLK and MCLK/10

//

// Description: Buffer ACLK on P5.6, SMCLK(DCO) on P5.5, MCLK on P5.4 and

// MCLK/10 on P5.3.

// ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = CALxxx_8MHZ = 8MHz

// //* External watch crystal on XIN XOUT is required for ACLK *//

//

// MSP430F261x/241x

// -----------------

// /|\| XIN|-

// | | | 32kHz

// --|RST XOUT|-

// | |

// | P5.6|-->ACLK = 32kHz

// | P5.5|-->SMCLK = 8MHz

// | P5.4|-->MCLK = DCO

// | P5.3|-->MCLK/10

//

// B. Nisarga

// Texas Instruments Inc.

// September 2007

// Built with CCE Version: 3.2.0 and IAR Embedded Workbench Version: 3.42A

// B. Nisarga

// Texas Instruments Inc.

// September 2007

// Built with CCE Version: 3.2.0 and IAR Embedded Workbench Version: 3.42A

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.2, Issue No.11, November 2013 ISSN-2319-8354(E)

83 | P a g e
www.ijarse.com

//**

#include"msp430f2618.h"

int main(void)

{

WDTCTL = WDTPW + WDTHOLD; // Stop Watchdog Timer if (CALBC1_8MHZ==0xFF)

 // If calibration constant erased

int i;

BCSCTL1 = CALBC1_1MHZ;

DCOCTL = CALDCO_1MHZ;

BCSCTL3|= XT2S1;

for (i = 0xFF; i > 0; i--); // Time for flag to set

BCSCTL1 |= XTS; // ACLK = LFXT1 = HF XTAL

BCSCTL2 |= SELM_2 + SELS; // MCLK/SMCLK = LFXT1 (safe)

BCSCTL3 |= XT2S_2; // 16MHz crystal

BCSCTL3 &= ~XCAP0;

do

{

IFG1 &= ~OFIFG; // Clear OSCFault flag

for (= 0xFF; i > 0; i--); // Time for flag to set

}

while (IFG1 & OFIFG); // OSCFault flag still set?

P5DIR |= 0x70; // P5.4/5/6= output directionP5DIR |= 0x70; // P5.4/5/6= output

direction

P5SEL |= 0x70; // P5.4/5/6= MCLK/SMCLK/ACLK option select

while(1);

}

but these calibration constants are sometimes erased or changed due to different programming and burning design

performed on the MCU .so these needs to be replaced with correct constant values. For this purpose a program is

used REPLACES THE TI FACTORY-PROGRAMMED DCO CALIBRATION CONSTANTS LOCATED IN

INFO segment A WITH NEW VALUES.

//**

// Custom DCO settings- based on TI code example

// MSP430F20xx Demo - DCO Calibration Constants Programmer

//

// NOTE: THIS CODE REPLACES THE TI FACTORY-PROGRAMMED DCO CALIBRATION

// CONSTANTS LOCATED IN INFOA WITH NEW VALUES. USE ONLY IF THE ORIGINAL

// CONSTANTS ACCIDENTALLY GOT CORRUPTED OR ERASED.

//

//

// MSP430F20xx

// ---------------

// /|\| XIN|-

// | | | 32kHz

// --|RST XOUT|-

// | |

// | P1.0|--> LED

// | P1.4|--> SMLCK = target DC

// Orignal Code By

// A. Dannenberg

// Texas Instruments Inc.

// May 2007

// Built with CCE Version: 3.2.0 and IAR Embedded Workbench Version: 3.42A

//**

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.2, Issue No.11, November 2013 ISSN-2319-8354(E)

84 | P a g e
www.ijarse.com

//**

/*Flash Custom DCO settings, This will replace The default 1MHz */

/* to use

//Custom calibration

BCSCTL1 = CALBC1_1MHZ; // Set range

DCOCTL = CALDCO_1MHZ; // Set DCO step + modulation

*/

//ACLK = LFXT1/8 = 32768/8, MCLK = SMCLK = target DCO

//* External watch crystal installed on XIN XOUT is required for ACLK *//

//**

#include <msp430f2618.h>

#include "DCO_Library.h"

unsigned char CAL_DATA[10];

int j;

char *Flash_ptrA;

void main(void)

{

volatile unsigned int I;

WDTCTL = WDTPW +WDTHOLD; // Stop Watchdog Timer

unsigned char CAL_DATA[10];

int j;

char *Flash_ptrA;

void main(void)

{

volatile unsigned int I;

WDTCTL = WDTPW +WDTHOLD; // Stop Watchdog Timer

P1DIR |= 0x12; // P1.1 and P1.4 outputs

P1SEL |= 0x10; // P1.4 SMCLK output

P2DIR |= 0x01; // P2.0 output

P2SEL |= 0x01; // P2.0 ACLK output

j=0;

for(I = 0; I < 0xFFFF; I++){} // delay for ACLK startup

TI_SetDCO(TI_DCO_12MHZ); // Set DCO and obtain constants

CAL_DATA[j++] = DCOCTL;

CAL_DATA[j++] = BCSCTL1;

TI_SetDCO(TI_DCO_12MHZ); // Set DCO and obtain constants

CAL_DATA[j++] = DCOCTL;

CAL_DATA[j++] = BCSCTL1;

TI_SetDCO(TI_DCO_8MHZ); // Set DCO and obtain constants

CAL_DATA[j++] = DCOCTL;

CAL_DATA[j++] = BCSCTL1;

TI_SetDCO(TI_DCO_1MHZ); // Set DCO and obtain constants

CAL_DATA[j++] = DCOCTL;

CAL_DATA[j++] = BCSCTL1;

P1OUT |= 0x02; // P1.1 = 1

P1OUT &= ~0x02; // P1.1 = 0

Flash_ptrA = (char *)0x10C0; // Point to beginning of seg A

FCTL2 = FWKEY + FSSEL0 + FN1; // MCLK/3 for Flash Timing Generator

FCTL1 = FWKEY + ERASE; // Set Erase bit

FCTL3 = FWKEY + LOCKA; // Clear LOCK & LOCKA bits

P1OUT |= 0x02; // P1.1 = 1

P1OUT &= ~0x02; // P1.1 = 0

Flash_ptrA = (char *)0x10C0; // Point to beginning of seg A

FCTL2 = FWKEY + FSSEL0 + FN1; // MCLK/3 for Flash Timing Generator

FCTL1 = FWKEY + ERASE; // Set Erase bit

FCTL3 = FWKEY + LOCKA; // Clear LOCK & LOCKA bits

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.2, Issue No.11, November 2013 ISSN-2319-8354(E)

85 | P a g e
www.ijarse.com

*Flash_ptrA = 0x00; // Dummy write to erase Flash seg A

FCTL1 = FWKEY + WRT; // Set WRT bit for write operation

Flash_ptrA = (char *)0x10F8; // Point to beginning of cal consts

for (j = 0; j < 10; j++)

*Flash_ptrA++ = CAL_DATA[j]; // re-flash DCO calibration data

FCTL1 = FWKEY; // Clear WRT bit

FCTL3 = FWKEY + LOCKA + LOCK; // Set LOCK & LOCKA bit

P1OUT |= 0x02; // P1.1 = 1

P1OUT &= ~0x02; // P1.1 = 0}

 These calibrated constants can be used any time in future in any application.

VIII. DETAILS OF READINGS

Five microcontrollers were taken of the series msp430f2618 which were provided.

Their readings i.e. ACLK, MCLK and SMLK readings were taken directly from the MCU Pin no 50, 48, 49

respectively using DSO. The block diagram showing pin configuration MSP430f2618 ultra low MCU is shown

below.

MSP4302618

MCU-1

freq

1MHZ

 8MHZ

 12MHZ

pin

P5.4/MCLK(48)

P5.5/SMCLK(49)

P5.6/ACLK(50)

 P5.4/MCLK(48)

P5.5/SMCLK(49)

P5.6/ACLK(50)

 P5.4/MCLK(48)

BEFORE

CALIBRATION

15.0582MHZ

15.0635MHZ

32.7677KHZ

 15.0542MHZ

15.0625MHZ

32.7677KHZ

 15.0462MHZ

AFTER

CALIBRATION

998.822KHZ

998.915KHZ

32.7677KHZ

 7.98907MHZ

7.99075MHZ

32.7677KHZ

 11.9979MHZ

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.2, Issue No.11, November 2013 ISSN-2319-8354(E)

86 | P a g e
www.ijarse.com

 MCU-2

 MCU-3

 16MHZ

1MHZ

 8MHZ

 12MHZ

 16MHZ

1MHZ

 8MHZ

 12MHZ

 16MHZ

1MHZ

P5.5/SMCLK(49)

P5.6/ACLK(50)

 P5.4/MCLK(48)

P5.5/SMCLK(49)

P5.6/ACLK(50)

P5.4/MCLK(48)

P5.5/SMCLK(49)

P5.6/ACLK(50)

 P5.4/MCLK(48)

P5.5/SMCLK(49)

P5.6/ACLK(50)

 P5.4/MCLK(48)

P5.5/SMCLK(49)

P5.6/ACLK(50)

 P5.4/MCLK(48)

P5.5/SMCLK(49)

P5.6/ACLK(50)

P5.4/MCLK(48)

P5.5/SMCLK(49)

P5.6/ACLK(50)

 P5.4/MCLK(48)

P5.5/SMCLK(49)

P5.6/ACLK(50)

 P5.4/MCLK(48)

P5.5/SMCLK(49)

P5.6/ACLK(50)

 P5.4/MCLK(48)

P5.5/SMCLK(49)

P5.6/ACLK(50)

P5.4/MCLK(48)

P5.5/SMCLK(49)

P5.6/ACLK(50)

15.0185MHZ

32.7677KHZ

 15.0902MHZ

15.0225MHZ

32.7677KHZ

15.0152MHZ

15.0565MHZ

32.7677KHZ

 15.0190MHZ

15.0225MHZ

32.7677KHZ

 15.0125MHZ

15.0490MHZ

32.7677KHZ

 15.1908MHZ

15.0789MHZ

32.7677KHZ

15.0145MHZ

15.0865MHZ

32.7677KHZ

 15.0675MHZ

15.1225MHZ

32.7677KHZ

 15.0789MHZ

15.0540MHZ

32.7677KHZ

 15.1908MHZ

15.0129MHZ

32.7677KHZ

15.0890MHZ

15.0345MHZ

32.7677KHZ

12.0006MHZ

32.7677KHZ

 16.0053MHZ

16.0066MHZ

32.7677KHZ

1.00189MHZ

1.00182MHZ

32.7677KHZ

 7.98961MHZ

7.99075MHZ

32.7677KHZ

 11.9944MHZ

11.9950MHZ

32.7677KHZ

 16.0128MHZ

15.0098MHZ

32.7677KHZ

999.425KHZ

999.201KHZ

32.7677KHZ

 8.00209MHZ

8.00293MHZ

32.7677KHZ

 11.8490MHZ

11.9480MHZ

32.7677KHZ

 15.9899MHZ

15.9947MHZ

32.7677KHZ

999.435kHZ

999.438kHZ

32.7677KHZ

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.2, Issue No.11, November 2013 ISSN-2319-8354(E)

87 | P a g e
www.ijarse.com

 MCU-4

 MCU-5

 8MHZ

 12MHZ

 16MHZ

1MHZ

 8MHZ

 12MHZ

 16MHZ

 P5.4/MCLK(48)

P5.5/SMCLK(49)

P5.6/ACLK(50)

 P5.4/MCLK(48)

P5.5/SMCLK(49)

P5.6/ACLK(50)

 P5.4/MCLK(48)

P5.5/SMCLK(49)

P5.6/ACLK(50)

P5.4/MCLK(48)

P5.5/SMCLK(49)

P5.6/ACLK(50)

 P5.4/MCLK(48)

P5.5/SMCLK(49)

P5.6/ACLK(50)

 P5.4/MCLK(48)

P5.5/SMCLK(49)

P5.6/ACLK(50)

 P5.4/MCLK(48)

P5.5/SMCLK(49)

P5.6/ACLK(50)

 15.0108MHZ

15.0998MHZ

32.7677KHZ

 15.0890MHZ

15.0760MHZ

32.7677KHZ

 15.0709MHZ

15.0128MHZ

32.7677KHZ

15.1345MHZ

15.0975MHZ

32.7677KHZ

 15.1208MHZ

15.0398MHZ

32.7677KHZ

 15.0390MHZ

15.0260MHZ

32.7677KHZ

 15.2609MHZ

15.1268MHZ

32.7677KHZ

 7.98947MHZ

7.99267MHZ

32.7677KHZ

 12.0044MHZ

 32.7677KHZ

 15.9772MHZ

15.9831MHZ

32.7677KHZ

1.00054MHZ

1.00067MHZ

32.7677KHZ

 7.99483MHZ

7.99765MHZ

32.7677KHZ

 11.9982MHZ

11.9972MHZ

32.7677KHZ

 15.9906MHZ

15.9924MHZ

32.7677KHZ

IX. CONCLUSION

We have studied the different clock signals along with their sources .specially DCO(digitally controlled oscillator)

how it’s oscillation frequency can be controlled using software .we also studied different ways to calibrate DCO by

tuning it to a more accurate external source. Difference between the clock readings before and after calibration were

observed, recorded and Justified .there is small margin of inaccuracy within small range of few hertz which varied

randomly while measuring clock readings.

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.2, Issue No.11, November 2013 ISSN-2319-8354(E)

88 | P a g e
www.ijarse.com

REFRENCES

[1].MSP430 2618 User Manual.

[2]Application report – using the DCO library.

[3]MSP430F2618 Device Erratasheet

[4]www.ti.com

[5]http://mspsci.blogspot.in/2010/07/tutorial-08-b-configuring-dco.html

[6]http://justinstech.org/2011/05/msp430-custom-calibration-for-dco/

[7]http://www.embeddedrelated.com/groups/msp430/show/49720.php

http://www.ti.com/
http://mspsci.blogspot.in/2010/07/tutorial-08-b-configuring-dco.html
http://justinstech.org/2011/05/msp430-custom-calibration-for-dco/
http://www.embeddedrelated.com/groups/msp430/show/49720.php

