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ABSTRACT

When an asynchronous copy back cache architecture is designed to work with the AMULET pracessor, a third
generation asynchronous ARM implementation, there is a problem,of RAW_hazarduin,basic write buffering using the
read overtake write technique where the line fetch data conflicts with the"buffered writes in‘the write buffer. This
could also happen in a synchronous environment, mihere one well known solution is to forward directly from the
write buffer. In this paper same technique is applied in asynchronous“environment although implementing a
forwarding mechanism in an asynchronous’systemyis more/difficult because data to be forwarded is flowing in an
unsynchronized manner to the process which requires it:

I INTRODUCTION

1.1 Forwarding
A possible solutionfto forwarding injan asynchronous environment was introduced by Gilbert , an asynchronous

implementationfof a“recorded buffer intended for use in a processor register bank. The recorder buffer accepts input
data with arbitrary ordering and outputs them in a pre-assigned order. Forwarding of any entry is allowed from the
time itgis Written until it is overwritten by jnew data. A similar technique is used in this paper. This allows memory

write back t@ preceed unimpeded;but leaves valid data in the write buffer until it is overwritten.

Forwarding not onlyasolves ‘the”coherency problem, but can also reduce the number of memory cycles by
intercepting line fetches to’recently ejected addresses ( due to mismatch between system behavior and the
replacement algorithm )i"Evicted lines which are still required will then be returned to the main cache before they
are lost from the local system.

In this situation the write buffer is now performing the function of a victim cache. The position in a memory system
of a write buffer/victim cache is shown in above figure 1. Unlike the victim cache proposed by Jouppi ,where victim
cache tag look up was performed in parallel with the main cache tag check, thereby reducing the miss penalty, in

this architecture, the victim cache tag look up is triggered only on a cache miss. This gives better power efficiency

since most of the accesses can be satisfied in the main cache.
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When a cache miss occurs, the line which is beingejectedsto the victimicache need not be considered in the address
comparison for forwarding purposes since it will never contain the required lines. It must be excluded because the
fetch ( and possibly forward) andathe write buffer insertion processes are asynchronous so the contents of this
location may be changing during the comparison process. Therefore the victim cache holds one fewer lines than it

has storage locations in the write buffer.

Figure 2. Illlustrates the different sizesiof data transfer from/ to the cache system. Whilst cache communications

with the 4#inain memory are always word\transfers ( 32 bits ), communication with the processor can be done at

Figure 1: Write buffer/\ictim cache position

variods granularities up to a“word

communications within the cache“system transfer a whole cache line at a time. The transfer with # indicates the

long ( indicated using * ) i.e a byte, half word or a word. All internal

forwarding path (‘for'both the line address and content ) from the victim cache.

11 VICTIM CACHE PROCESSES

The victim cache was proposed by Jouppi as a method to reduce the impact of conflict misses in direct-mapped

cache structures, but is easy to generalize to any cache architecture. It is loaded only with items ejected from the

main cache. In the case of a cache miss that hits in the victim cache the LFL can therefore be filled without the

penalty of a memory read burst.

Figure 3 illustrates the control flow of the victim cache operation. The victim cache itself is a fully associative cache

composed of two main parts. Addresses are held in a tag Store 9CAM) and their corresponding data is held in the




International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.1, Issue No.1, April 2012 ISSN-2319-8354(E)

data store (RAM). However, operationally, the victim cache can be considered as a memory with three different
functions indicated by the grey loops (clockwise starting from the top left) acting upon it:

2.1 Line fetch and forwarding: A main cache miss occurs so the miss address is passed to the victim cache, which
must supply (forward) the requested line if it can. Again a Muller-C element ensures that the LFL is emptied before
refilling it with newly fetched data.

2.2 Cache eviction: A cache miss occurs and the main cache empties a line into the victim cache (shown in figure

XX labeled “fill VC). The victim cache has to provide an empty storage location for t

2.2 Buffered writes: The victim cache autonomously copies ‘dirty’ lines into the piain system memory (shown in

figure XX labeled ‘drain VC’), freeing space for re-use.
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Figure 2 : Data transfer granularity
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Figure'3y: Gontrol flow in the victim cache

However, there are only two independent, concurrent processes among these activities: filling (the first two

functions) and'draining the victim cache (the last function). Since a line fetch causes a cache eviction. The difficulty

in an asynchronousimplementation is that the data flowing into/out of the victim cache is entering/leaving in an

unsynchronized manner from the line-fetch/forwarding process that may require it.

111 VICTIM CACHE IMPLEMENTATION

A similar approach to the one used in the reorder buffer in AMULET3 which forwards register values is used here,

with the simplification that inputs and outputs are always in the same order.

The write buffer is a ‘circular buffer’ (which is a way of implementing a FIFO). Write operations are made to the in

pointer of the buffer and the write process strips entries from the out pointer whenever the bus goes idle. (The in and
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out pointers are shown later in figure XX) A useful property of circular buffers is that data does not move within the
buffers” storage elements and so can be read and forwarded despite the fact that another asynchronous process may
be writing the other data concurrently. The lifetime of the fordable data is fixed by the number of write buffer entries

and is entirely independent of the copy-back process.

IV VICTIM CACHE STORAGE

Three types of information are stored in each line of the victim cache : the address — heldyin a tag CAM allowing fast

parallel look-up; the data — held RAM; and a number of additional control markersnust also be kept. There are also
global in and out pointers (as in figure X) steering the writing into the emptyin ictim cache

respectively. Three extra bits for each data entry describe the data held (als

Full — the entry has been filled but not copied-out;

Dirty — the entry should be copied into the memory since it has been written to the whilst in cache ;

Valid — the entry may be considered for forwarding.

Modified on cache eviction(pointed to by in)

Accessed& modified on copying out(pointed by to out)

A Vo, 4

Modified on cache eviction(pointed to by in)
¢ Accessed on copying out(pointed to by out)

full dirty ,
X| X

X X X

X| X X <«— out

valid

Modified on cache eviction(pointed to by in)
———  Accessed &modified on forwarding

Figure 4 :Victim cache RAM structure

When a line of data, along with its “dirtiness’, arrives it is stored in the next empty slot as indicated by the in pointer
and the valid and full bits for the entry are set. The dirty bit for the entry is also set if the entry is dirty. The in
pointer then moves forward to the next slot.

The concurrent process pointed to by the out pointer waits for an entry to be full and then checks its “dirtiness”. If it
is dirty, the process coOmpetes for the bus and performs a set of writes to the memory, otherwise these writes can be
skipped. Lastly, the full bit is cleared to indicate that the write phase is complete and the out pointer moves forward

to the next entry. Note that the process proceeds regardless of any, possibly concurrent, forwarding activity.
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The function of the valid bits is to prevent the wrong data being forwarded. They are cleared at start-up when the
victim cache is empty and the tag fields are undefined. However, the valid bit for a line is also cleared when the line
is forwarded,; this prevents different versions of the same cache line being valid in the victim cache at the same time,
so that there can be at most one forward able line matching any address. This removes the need for prioritization
logic to guard against the (unlikely, but possible) chance that a line | evicted, forwarded and evicted again in close
succession. The forwarding process can safely clear the valid bit because forwarding is not possible from the entry
currently used for eviction (when the valid bit is set).This approach still retainsfthe independence between
forwarding (accessing and modifying the valid bit) and copying data out (accessing/and modifying only the full bit).
This means the forwarding scheme always returns clean data to the cache whilstithe copying out process has to be
performed regardless of whether the data has been forwarded (depending on the dirty bit).

There is an important difference between this forwarding scheme and.a cenventional register forwarding/scheme. In
the victim cache forwarding moves the data back to the cache rather than copying it, thusferwarding.an occur only
once per entry. A register forwarding scheme may duplicate the data and an unlimited number‘of times.

The eviction and copy back processes are independent and largely. decoupled, althoughithe in"pointer must not lap

the out pointer. In practice, the constraint is slightly meresstrict as is illustrated in further sections.

V VICTIM CACHE OPERATIONS

The cache operations involved in forwarding are showh, in'figure 4 .Address (\VC tag ) are held in the victim cache
along with their data ( VC data). Before reading external memory, a line fetch address can be compared with these
address tags ( 5* ) and if a matchoeecurs ,data can be forwarded directly from the victim cache (6* ) instead of
fetching the line from the memoryXThis‘does'net interfere with the (asynchronous) process of writing to the memory
( 8-) which may not yet have started, may be in‘progressy’or may have completed at this time. In the cache, the
forwarded line isgnarked as ‘clean’ in‘the process of being forwarded as it is already coherent with that in the main
memory or will be soaftenit is drained from the victim cache. With this forwarding mechanism, the control flow for
a cache reéad request can be extended as illustrated in figure 5 . The extra complexity only has an effect on a cache
misse«vhere itwill hopefully betable to forward the required data directly from the victim cache into the main cache

avoiding a full line fetch.

VI VICTIM CACHEBENEFITS

Figure 7 below illustratesthe benefit of the forwarding mechanism. In this example, the system’s state is that two
lines (A and B) have been recently rejected from the main cache into the write buffer and the main memory has been
updated with line B. Then these are required again with the sequence of address requests A2 followed by B1 each of
which is a cache miss ( and would originally require a line fetch). In this architecture line fetch data retrieved from
the main memory enters the main cache RAM via the LFL. The victim lines that are ejected from the cache on these
line fetches are not shown in the figure since they are not directly involved in this example but it is assumed that

they are all buffered in The write buffer. In this approach processor stall period and avoids a full line fetch from the
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memory but does not reduce the write traffic. It is possible to cancel the copy back process if a victim cache line is

salvaged.
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Figure 5: Cache Forwarding Operations
VII DEADLOCK AVOIDANCE BY USING A TOKEN QUEUE

If reads are allowed to overtake writes, there is a potential for deadlock during the cache line allocation process in a
copy back cache if victim cache become full. This is shown in figure 8 . When the line fetch engine asks for data
from the memory, the memory tries to send the data to the LFL(1). However, the LFL must be emptied before it can

store the newly fetched line (2). To empty the LFL requires allocation of a line in the cache RAM which must first
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be emptied into the victim cache (3), before the LFL can be read. If the victim cache is full, a line must be written
from it into the main memory (4), requiring the memory bus. This results in a deadlock if the memory is busy
performing the read ( and cannot service the memory writes ). The solution to this problem is to keep at least one
slot in the victim cache empty. In an asynchronous environment, a standard way to implement this solution is to use
a token queue where tokens corresponding to the victim cache locations are circulated. Initially, the allowed number
of tokens is placed in a pool and then one is claimed before each eviction can begin. The tokens then reside in the
one fewer token than the

victim cache until the copy out process returns them to the write buffer throttle. As th

Read
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Figure 6 : Cache read request control flow with forwarding
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Figure 7 : lllustration of benefits of Forwarding.




Fetch empty LFL

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.1, Issue No.1, April 2012 ISSN-2319-8354(E)

Victim line

(3)

Write buffer
LFL

(1)

Main memory

Figure 8 : lllustre Deadlock Situation

VIII EXTENDING THE VICTIM

complexity is considerable. The additional complexity mainly involves some
form of synch i arding and copy-back processes before forwarding in performed for any data.
Unfortunately, thi hronization may result in a long stall duration if a write out (which may possibly be
irrelevant to the forwa is under way. The exact benefits such a scheme would offer have not been thoroughly

investigated because the'extra cost involved is unlikely to be justifiable.

IXVICTIM CACHE DISTRIBUTION

The cache is partitioned into blocks although there is only a single memory bus upon which evicted data can be

written. This means that there are two alternative positions for the victim cache: centralized and shared, or
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distributed amongst the blocks. The following subsections discuss the advantages and disadvantages of each of these

two styles of victim cache for a cache system divided into N cache blocks with total victim cache size of V entries.

9.1 Centralized victim cache
Having a centralized and shared victim cache for the whole cache system means that V can be any size, with a
minimum of 1 line. However, for forwarding V must be at least 2 lines. This is becausenas described earlier, there

will be one entry in the victim cache that must not be considered for forwarding, leaving V-1 entries.

Cache block Cache block Cache block

»

A A
1 128 128 X128 128 [ 128

v v

MILIX | l\M:)i
128
VA

3

128

12

Victim cache

-

EIGURE 9;Centralized and shared victim cache

In this style ofyvictim cache, stalls due to filling up the victim cache are rare compared to the distributed scheme as
the victim cache iS)less likely to be full of entries waiting for copying to the main memory. Moreover, this stalling
can be easily recovered,from by“writing out a data entry from the victim cache. This is because the multiplexers in
such a system, one requiréd to multiplex write-out data from the N cache blocks and the other required for
distributing forwarded data back to the N cache blocks, are placed before the victim cache, which is actually the
critical path from the processor’s and the main cache’s perspective.

Figure 9 illustrates the organization of a centralized victim cache scheme. It also depicts the wiring problem that this
organization causes due to the cost of large, wide buses (128 bits) connecting the cache blocks to the shared victim

cache.
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9.2 Distributed victim cache
For a cache system divided into N blocks, to provide the same total storage as the centralized scheme, each cache
block has a local victim cache of V/N lines. To allow forwarding, V must be an integer multiple (>2) of N where the

same rule of forwarding ability is applied as for the centralized scheme.

Cache block Cacheblock | .................. Cache block
? Ar A
128 _— _+ 128 128 |~ -+ 128 128 1~ “V 128
Y \ 4 A
Victim cache Victim cache Victim cache
32 _ 3 L — 32 /f’
v VYoV
MUX
32 f
BUS

FIGURE 10: Distributed and localized victim cache

However, since’the sizenof each distributed victim cache is small(er), the tag comparison is either faster (for tag
RAM) or gheaper in power consumption'(for tag CAM). Furthermore, having a victim cache locally by each cache
block,4as illustrated in Figure, offers two further advantages over the centralized victim cache scheme. The first is
cheap wiring using short, narrow (32 bit) local copy-back and forwarding paths. The second is that the multiplexing
process becomes_non-critical g@nperformance. However, the small local victim caches, long duration stalls due to
filling up a victim cacheyare more likely to occur as the main memory arbiter may be in use draining dirty data from
a different (non-critical) victim cache. The choice of which victim cache implementation is best is not an obvious
one; both schemes havé advantages (bold) and disadvantages (unbold) summarized in table 11, some of which will

only be quantifiable when layout is produced.
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Centralized victim cache Distributed victim cache

Tag comparison Bigger, hence slower tag array Faster

Restriction on V Any size, minimum of 2 lines Integer multiple (>2) of N

Wiring cost Expensive 128-bit buses connecting | Much cheaper short local forwarding
blocks to victim cache paths

Forwarding ability (V-1) lines can be considered for (V-N) lines
forwarding

Stalls due to filling victim cache Very rare as victim cache unlikely to | Likely, and possibly of long
be full of entries waiting for copying | duration as the main memory arbiter
to main memory, and easily may befservicing a different block’s
recovered. (non=critical) victim cache drain

Multiplexing In critical path Everything isVocal

Tablell: Benefits of distributing théyictim cache

X CONCLUSION

Forwarding not only solves the coherency problem introduced by using a write buffen (with” read-overtake-write)
but, by virtue of storing and returning recently ejecteédnlines locally, turns the write buffer into a victim cache
providing a reduced processor stall period anddavoiding a full line fetch firom the amemory. However, it does not
reduce the write traffic since this seems to require unjustifiable additional cost.

This paper not only described how to implement ‘a vietimécache in @mpasynchronous framework, it also provided a
suitable victim cache storage structure to guarantee ‘thaththe correct data is forwarded even in the presence of
multiple entries at the same line ‘address in the victim cachey Furthermore, the token queue technique from the
AMULET3 reorder buffer is reused“to aweid deadlock injthe copy-back process. Finally, two schemes for
implementing a victim cache for the cache architectureshave been proposed and the advantages and disadvantages
for each scheme Mave been discussediinfdepth. Results and evaluations of the victim cache and the alternative

implementations are discussed.
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