International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.1, Issue No.1, April 2012 ISSN-2319-8354(E)

VICTIM CACHES - IN AN ASYNCHRONOUS
ENVIRONMENT.

Saurabh Rawat!, Dr Rakesh Kumar?,

Anushree Sah®, Sumit Pundir®, Bhaskar Nautiyal®

Department of Electronics
Graphic Era University, Dehradhun (India)

ABSTRACT

When an asynchronous copy back cache architecture is designed to work with the AMULET pracessor, a third
generation asynchronous ARM implementation, there is a problem,of RAW_hazarduin,basic write buffering using the
read overtake write technique where the line fetch data conflicts with the"buffered writes in‘the write buffer. This
could also happen in a synchronous environment, mihere one well known solution is to forward directly from the
write buffer. In this paper same technique is applied in asynchronous“environment although implementing a
forwarding mechanism in an asynchronous’systemyis more/difficult because data to be forwarded is flowing in an
unsynchronized manner to the process which requires it:

I INTRODUCTION

1.1 Forwarding
A possible solutionfto forwarding injan asynchronous environment was introduced by Gilbert , an asynchronous

implementationfof a“recorded buffer intended for use in a processor register bank. The recorder buffer accepts input
data with arbitrary ordering and outputs them in a pre-assigned order. Forwarding of any entry is allowed from the
time itgis Written until it is overwritten by jnew data. A similar technique is used in this paper. This allows memory

write back t@ preceed unimpeded;but leaves valid data in the write buffer until it is overwritten.

Forwarding not onlyasolves ‘the”coherency problem, but can also reduce the number of memory cycles by
intercepting line fetches to’recently ejected addresses (due to mismatch between system behavior and the
replacement algorithm)i"Evicted lines which are still required will then be returned to the main cache before they
are lost from the local system.

In this situation the write buffer is now performing the function of a victim cache. The position in a memory system
of a write buffer/victim cache is shown in above figure 1. Unlike the victim cache proposed by Jouppi ,where victim
cache tag look up was performed in parallel with the main cache tag check, thereby reducing the miss penalty, in

this architecture, the victim cache tag look up is triggered only on a cache miss. This gives better power efficiency

since most of the accesses can be satisfied in the main cache.

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.1, Issue No.1, April 2012 ISSN-2319-8354(E)
processor
address Main cache data
[
eviction :
Fetch | N e NN Fetch data
address Look un) Write buffer/victim cache forward)
(|
write

Main memory

Figure 1: Write buffer/\ictim cache position

When a cache miss occurs, the line which is beingejectedsto the victimicache need not be considered in the address
comparison for forwarding purposes since it will never contain the required lines. It must be excluded because the
fetch (and possibly forward) andathe write buffer insertion processes are asynchronous so the contents of this
location may be changing during the comparison process. Therefore the victim cache holds one fewer lines than it
has storage locations in the write buffer.

Figure 2. Illlustrates the different sizesiof data transfer from/ to the cache system. Whilst cache communications
with the 4#inain memory are always word\transfers (32 bits), communication with the processor can be done at
varios granularities up to a“word long (indicated using *) i.e a byte, half word or a word. All internal
communications within the cache“system transfer a whole cache line at a time. The transfer with # indicates the
forwarding path (‘for'both the line address and content) from the victim cache.

11 VICTIM CACHE PROCESSES

The victim cache was proposed by Jouppi as a method to reduce the impact of conflict misses in direct-mapped
cache structures, but is easy to generalize to any cache architecture. It is loaded only with items ejected from the
main cache. In the case of a cache miss that hits in the victim cache the LFL can therefore be filled without the

penalty of a memory read burst.

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.1, Issue No.1, April 2012 ISSN-2319-8354(E)

Figure 3 illustrates the control flow of the victim cache operation. The victim cache itself is a fully associative cache
composed of two main parts. Addresses are held in a tag Store 9CAM) and their corresponding data is held in the
data store (RAM). However, operationally, the victim cache can be considered as a memory with three different
functions indicated by the grey loops (clockwise starting from the top left) acting upon it:

2.1 Line fetch and forwarding: A main cache miss occurs so the miss address is passed to the victim cache, which
must supply (forward) the requested line if it can. Again a Muller-C element ensures that the LFL is emptied before

refilling it with newly fetched data.

2.2 Cache eviction: A cache miss occurs and the main cache empties a line into the victim cache (shown in figure
XX labeled “fill VC). The victim cache has to provide an empty storage locati
2.2 Buffered writes: The victim cache autonomously copies ‘dirty’ lines into the own in

figure XX labeled ‘drain VC), freeing space for re-use.

Processor bus

Word *transfer

Line buffer

A
Line transfer

< Word *transfer
Cache RAM
‘ Line transfer A
Line transfer <
LFL |
Line transfer
Victim cache Word transfer

Word transfer

A\ 4

Memory bus

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.1, Issue No.1, April 2012 ISSN-2319-8354(E)

Figure 2 : Data transfer granularity

\ Line fetch request

Refill LJFL l P e !

4

C

Write buffer occupancy

Request bus

Victim cache N
I

j Fetch arbit>\

iterate

Jpﬁ\\

Empty LFL Release bus

f

Previous line

Write buffer
throttle

fetch complete

I

forward

,_
1
1
1
1
1
I‘
T
[
|
|
I
I
:
»no
17
|
Il
)
|
i
L
1
1
1
1
1
1
1

A

bus

Figure 3 : Control flow in the victim cache

However, there are only two independent, concurrent processes among these activities: filling (the first two
functions) and draining the victim cache (the last function). Since a line fetch causes a cache eviction. The difficulty
in an asynchronous implementation is that the data flowing into/out of the victim cache is entering/leaving in an

unsynchronized manner from the line-fetch/forwarding process that may require it.

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.1, Issue No.1, April 2012 ISSN-2319-8354(E)

111 VICTIM CACHE IMPLEMENTATION

A similar approach to the one used in the reorder buffer in AMULET3 which forwards register values is used here,
with the simplification that inputs and outputs are always in the same order.

The write buffer is a ‘circular buffer’ (which is a way of implementing a FIFO). Write operations are made to the in
pointer of the buffer and the write process strips entries from the out pointer whenever the bus goes idle. (The in and

out pointers are shown later in figure XX) A useful property of circular buffers is that data does not move within the

buffers” storage elements and so can be read and forwarded despite the fact that anot chronous process may

be writing the other data concurrently. The lifetime of the fordable data is fixed byshe number of write buffer entries

and is entirely independent of the copy-back process.

IV VICTIM CACHE STORAGE
Three types of information are stored in each line of the victim ¢ : owing fast

Full — the entry has been filled but not copieg
Dirty — the entry should be copied into the memo ice it N the whilst in the main cache ;

Valid — the entry may be considered for forwarding.

Y

Modified on cache eviction(pointed to by in)
Accessed& modified on copying out(pointed by to out)

v 7

Modified on cache eviction(pointed to by in)
Accessed on copying out(pointed to by out)

full dirty

X| X

X| X

X[X <+— out
valid

| Modified on cache eviction(pointed to by in)
——— Accessed &modified on forwarding

Figure 4 :Victim cache RAM structure

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.1, Issue No.1, April 2012 ISSN-2319-8354(E)

When a line of data, along with its “dirtiness’, arrives it is stored in the next empty slot as indicated by the in pointer
and the valid and full bits for the entry are set. The dirty bit for the entry is also set if the entry is dirty. The in
pointer then moves forward to the next slot.

The concurrent process pointed to by the out pointer waits for an entry to be full and then checks its “dirtiness”. If it
is dirty, the process coOmpetes for the bus and performs a set of writes to the memory, otherwise these writes can be
skipped. Lastly, the full bit is cleared to indicate that the write phase is complete and the out pointer moves forward
to the next entry. Note that the process proceeds regardless of any, possibly concurrentgforwarding activity.

The function of the valid bits is to prevent the wrong data being forwarded. Theyfare cleared at start-up when the
victim cache is empty and the tag fields are undefined. However, the valid bitfona line is also eleared when the line
is forwarded,; this prevents different versions of the same cache line being valid initheyvictimy'cacheat the\same time,
so that there can be at most one forward able line matching any address. This removes the need for prioritization
logic to guard against the (unlikely, but possible) chance that a line | evicted, forwarded andievicteddagain in close
succession. The forwarding process can safely clear the valid bit because forwarding is not pessible from the entry
currently used for eviction (when the valid bit is set).

This approach still retains the independence betweensferwarding (accessing and maedifying the valid bit) and
copying data out (accessing and modifying only the full'bit), This meansythe forwarding scheme always returns
clean data to the cache whilst the copying ettt process has to be performed regardless of whether the data has been
forwarded (depending on the dirty bit).

There is an important difference between this forwarding seheme and a conventional register forwarding scheme. In
the victim cache forwarding movesithe data back to the cache rathersthan copying it, thus forwarding can occur only
once per entry. A register forwarding schemesmay duplicate the data and an unlimited number of times.

The eviction and copy back processes are independentyandslargely decoupled, although the in pointer must not lap

the out pointer. Ingractice, the constraintds slightly mare strict as is illustrated in further sections.

V VICTIM CACHE OPERATIONS

The cache operations involvediin forwarding are shown in figure 4 .Address (VVC tag) are held in the victim cache
along with their data (\VC data). Before reading external memory, a line fetch address can be compared with these
address tags (5*9) and if a match occurs ,data can be forwarded directly from the victim cache (6*) instead of
fetching the line from'the memory. This does not interfere with the (asynchronous) process of writing to the memory
(8-) which may not yet'have started, may be in progress, or may have completed at this time. In the cache, the
forwarded line is marked as ‘clean’ in the process of being forwarded as it is already coherent with that in the main
memory or will be so after it is drained from the victim cache. With this forwarding mechanism, the control flow for
a cache read request can be extended as illustrated in figure 5 . The extra complexity only has an effect on a cache
miss where it will hopefully be able to forward the required data directly from the victim cache into the main cache

avoiding a full line fetch.

International Journal Of Advance Research In Science And Engineering

IJARSE, Vol. No.1, Issue No.1, April 2012

VI VICTIM CACHE BENEFITS

Figure 7 below illustrates the benefit of the forwarding mechanism. In this example, the system’s state is that two

http://www.ijarse.com

ISSN-2319-8354(E)

lines (A and B) have been recently rejected from the main cache into the write buffer and the main memory has been

updated with line B. Then these are required again with the sequence of address requests A2 followed by B1 each of

which is a cache miss (and would originally require a line fetch). In this architecture line fetch data retrieved from

the main memory enters the main cache RAM via the LFL. The victim lines that are ejected, from the cache on these

line fetches are not shown in the figure since they are not directly involved in this example but it is assumed that

they are all buffered in The write buffer. In this approach processor stall perigd and avoids a full line fetch from the

memory but does not reduce the write traffic. It is possible to cancel the copy backiproeessdfa victim cache line is

Forward data from VC

salvaged.
Processor
A
@ LB tag does not match address
v
LB tag IR data Send
I Data
v to

arbiter i E—— - processor

1 [}

» CAM i Cache RAM

L i
CAM T i Evict a lineyinto write buffer
Does P evicted i CS) evicted
not : :
match '= !
address ' A | Empty LFL into

1 1

Cz\ ! @ @ cache RAM
| Perform write in LFL
LFL tag : . -
: > LFL

VC tag matches address

@i

A

/

<
(@]
-
Q
o

Y

Update memory with dirty data

to LFL

\ 4

System bus

Rea

i rea

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.1, Issue No.1, April 2012 ISSN-2319-8354(E)

Figure 5: Cache Forwarding Operations

VII DEADLOCK AVOIDANCE BY USING A TOKEN QUEUE

If reads are allowed to overtake writes, there is a potential for deadlock during the«€ache line allocation process in a

be emptied into the victim cache (3), before the LFL can be re
from it into the main memory (4), requiring the memory bus

performing the read (and cannot service the memory writes).

A 4

Line buffer

select

Read
merge
RAM hit Cache RAM
select >
select
LFL hit
data
miss 2
data
forward

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.1, Issue No.1, April 2012 ISSN-2319-8354(E)
» select — > Victim cache
data
miss l
LF engine
addr l
External memory
Figure 6 : Cache read request contralflow with forwarding
(a) Without forwarding mechanism
LFL z A le— B le—
W8 A (A) (A)
(B) (B) (B)
LFL AD B1
memory ‘A" |‘A1’| ‘A2’| ‘A3’ A2| A3 A0 |Al1l | Bl B2 B3 BO
A
Data to processor RAW dependency A2 B1
time > y
Or X is a read from addressX

X Or ‘X’ is a write to address X

(X) Already wrote to address X

(b) with forwarding mechanism

LFL z r A B B

/

VC A A A (A) *

Fetch empty LFL

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.1, Issue No.1, April 2012 ISSN-2319-8354(E)
(B) (B) (B) (B)
i
LFL A2|B1
memorv IAOI ‘ All IA2I IA3I
victim cache *A® *B*

Data to processor A2|B1

Figure 7 : lllustration of bene

A

Victim line

Write buffer

write

Main memory

!lgure 8 : lllustration of Deadlock Situation

VIII EXTENDING THE VICTIM CACHE TO REDUCE WRITE TRAFFIC

Figure 7 showed that forwarding can both reduce the processor stall period by avoiding a full line fetch from the
external memory and (as a by-product) reduce the read traffic. However, the write traffic remains unaffected. This is
because, in the approach described, the forwarding mechanism does not interact with the process copying data out to
the memory. Therefore all dirty data must be written back to the man memory regardless of whether it has been
forwarded.

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.1, Issue No.1, April 2012 ISSN-2319-8354(E)

It is possible to avoid the data copying out process if a victim cache line is salvaged. This can be achieved by
detecting that forwarding has been performed before a write out (copy-back) has begun. In this case it would be
possible to abort the write and instead return a (possibly dirty) line to the cache. This could reduce the bus traffic a
little further, but the cost in added complexity is considerable. The additional complexity mainly involves some
form of synchronization of the forwarding and copy-back processes before forwarding in performed for any data.
Unfortunately, this synchronization may result in a long stall duration if a write out (which may possibly be
irrelevant to the forwarding) is under way. The exact benefits such a scheme would offerhave not been thoroughly

investigated because the extra cost involved is unlikely to be justifiable.

IXVICTIM CACHE DISTRIBUTION

The cache is partitioned into blocks although there is only a single*memary bus upon which evictedddata can be
written. This means that there are two alternative positions/for the victim cache: centralizeddand shared, or
distributed amongst the blocks. The following subsections discuss the advantages and'disadvantages of each of these

two styles of victim cache for a cache system divided into N cache blocks with total victim cache size of V entries.

9.1 Centralized victim cache
Having a centralized and shared victim cache for the whole cache“system means that V can be any size, with a
minimum of 1 line. However, for forwarding V must be‘at least 2 lines. This is because, as described earlier, there

will be one entry in the victim cache that,must not be considered for forwarding, leaving V-1 entries.

Cache block Cacheblock | = Cache block
A A
- 128 128 128 128 128
128
v v
\\MIIX/| MILUIX
128
—— 128
Victim cache
32 [

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.1, Issue No.1, April 2012 ISSN-2319-8354(E)

FIGURE 9; Centralized and shared victim cache

In this style of victim cache, stalls due to filling up the victim cache are rare compared to the distributed scheme as
the victim cache is less likely to be full of entries waiting for copying to the main memory. Moreover, this stalling
can be easily recovered from by writing out a data entry from the victim cache. This is because the multiplexers in
such a system, one required to multiplex write-out data from the N cache blocks and the other required for

distributing forwarded data back to the N cache blocks, are placed before the victi e, which is actually the

critical path from the processor’s and the main cache’s perspective.
Figure 9 illustrates the organization of a centralized victim cache scheme. It i ing problem that this
organization causes due to the cost of large, wide buses (128 bits) connecting th red victim

cache.

9.2 Distributed victim cache
For a cache system divided into N blocks, to provide the same to i me, each cache
block has a local victim cache of V/N lines. To allow forwarding, V must be an integer multiple (>2) of N where the

same rule of forwarding ability is applied as for th

..... .. Cache block

Cache block Cache block

A

128 +— _+ 128 V 128 17 b 128
v Y
Victim cache Victim cache Victim cache
s 32 4 32 /L 32 /)[’
vy vy V¥
MUX
EY) f
BUS

FIGURE 10: Distributed and localized victim cache

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.1, Issue No.1, April 2012 ISSN-2319-8354(E)

However, since the size of each distributed victim cache is small(er), the tag comparison is either faster (for tag
RAM) or cheaper in power consumption (for tag CAM). Furthermore, having a victim cache locally by each cache
block, as illustrated in Figure, offers two further advantages over the centralized victim cache scheme. The first is
cheap wiring using short, narrow (32 bit) local copy-back and forwarding paths. The second is that the multiplexing
process becomes non-critical to performance. However, the small local victim caches, long duration stalls due to
filling up a victim cache are more likely to occur as the main memory arbiter may be in use draining dirty data from
a different (non-critical) victim cache. The choice of which victim cache implementatioh,is best is not an obvious
one; both schemes have advantages (bold) and disadvantages (unbold) summarized'in table 11, some of which will

only be quantifiable when layout is produced.

Centralized victim cache Distributed victim cache

Tag comparison Bigger, hence slower tag array Faster

Restriction on V Any size, minimum of 2 lines Integer multiple,(>2) of N

Wiring cost Expensive 128-bit buses connecting | Much cheapershort’local forwarding
blocks to victim cache paths

Forwarding ability (V-1) lines can be considered for (V-N)ines
forwarding

Stalls due to filling victim cache Very rare asvictim cache unlikely to | Likely,/and possibly of long
be full of entries waiting for copyingwgj. duration as the main memory arbiter
to main memory, and easily may be servicing a different block’s
recovered., (non-critical) victim cache drain

Multiplexing In critical path Everything is local

Tableld: Benefits of distributing’the victim cache

X CONCLUSION

Forwarding not’only.solves the coherency problem introduced by using a write buffer (with read-overtake-write)
but, by virtue of storing and returning Yecently ejected lines locally, turns the write buffer into a victim cache
providifig ayreduced processor stall period and avoiding a full line fetch from the memory. However, it does not
reduce the writeytraffic since this'seems to require unjustifiable additional cost.

This paper not onlyadescribedghew to implement a victim cache in an asynchronous framework, it also provided a
suitable victim cache storage, structure to guarantee that the correct data is forwarded even in the presence of
multiple entries at the same line address in the victim cache. Furthermore, the token queue technique from the
AMULET3 reorder bdffer is reused to avoid deadlock in the copy-back process. Finally, two schemes for
implementing a victim cache for the cache architecture have been proposed and the advantages and disadvantages
for each scheme have been discussed in depth. Results and evaluations of the victim cache and the alternative

implementations are discussed.

REFERENCES

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.1, Issue No.1, April 2012 ISSN-2319-8354(E)

[1] Jouppi, N. P. Improving Direct-Mapped Cache Performance by the Addition of a Small Fully- Associative Cache
and Prefetch Buffers. Proceedings of 17th Annual Int’l Symposium on Computer Architecture, 1990, pp. 364-373.
[2] Przybylski, M. Horowitz, and J. Hennessy.Characteristics of performance-optimal multi-level cache hierarchies.
Proceedings of the 16thInternational Symposium on Computer Architecture, 1989, pp. 114 —121.

[3] Baer, Jean-Loup, and Wang, Wen-Hann. On the inclusion properties for multi-level cache hierarchies. 25 years
of the international Symposia on Computer Architecture (selected papers), 1998,pp. 3454 352

[4] Gee, et al.. Cache Performance of the SPEC92Benchmark Suite. IEEE Micro, Vi mber 4, August, 1993,
pp. 17 — 27.http://www.cs.wisc.edu/~markhill/spec92miss.html

[5] Johnson, Teresa L., and Hwu, Wen-mei W. Runtime Adaptive Cache Hi
Analysis. ISCA '97, Denver, CO, USA, pp. 315 — 326.

[6] Jouppi, Norman P, and Wilton, Steven J. E. Tradeoffs in Two-
October 1993, Compag Western Research
[7] Steven Przybylski, Mark Horowitz, John L.Hennessy. Perfor . ISCA 1988:
Honolulu, Hawaii, USA, pp. 290 — 298.

[11] Hill. A case for Direct Mapped

[12] Smith, A. J. Cathe Memories. CG

