International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.1, Issue No.1, February, 2012 ISSN-2319-8354(E)

IMPROVING MEMORY HIERARCHY PERFORMANCE
IN SYNCHRONOUS DESIGN

Saurabh Rawat!, Dr Rakesh Kumar?, Anushree Sah®,
Sumit Pundir®, Bhaskar Nautiyal®

Department of Electronics
Graphic Era University, Dehradhun (In

ABSTRACT

I INTRODUCTION

1 Measuring Performance

Memory hierarchy performancegrepresented by the avera ory access time (Tyg) Can be calculated as

penalty).
Improving me

This can

peripherals and giving the added bonus of reduced power consumption. First obvious technique for
reducing processor memory traffic is caching itself.

I REDUCING CACHE HIT TIME

Hit time is critical to performance since it affects the majority of memory references and memory latency is often

the limiting factor on system performance (and so clock frequency).An integrated cache on the same die as the

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.1, Issue No.1, February, 2012 ISSN-2319-8354(E)

processor can support high bandwidth and low latency memory access by using a wide interface and eliminating the
delay of pads and buses that arises with off chip access. Furthermore, on chip caching also decreases energy
consumption in the memory system due to the reduction in off chip accesses. However, on chip area is often limited
and so caches have to be small. The less control involved in a cache’s implementation, the shorter the delay in the
critical path through the hardware. Small and simple caches are ideal in this respect and a direct mapped cache is
suggested to reduce hit time, since tag checking can be overlapped with the data access. However the major
disadvantage of small and simple caches is that they are more likely to suffer fromdhigher miss rates i.e. Ty is

reduced but M increases.

111 REDUCING CACHE MISS RATE

To reduce the miss rate, some of the misses due to three £’s —compulsory, capacity and conflict, must be
eliminated. Compulsory misses are caused by loading data into'an,empty cacherandhare therefore unavoidable. It is
possible to change mixture of miss types, for example: compulsory-misses‘can be converted to conflict or capacity
misses by changing cache size or other parametersgTheretare many parameters that can be adjusted to control the
mixture of conflict, capacity and compulsory misses.

a. Larger Cache Size — to reduce the number.ofeapacity /misses is to increase cache size, but changing size also
affects number of conflict misses. The total cache,size can‘be incréased by having more cache lines (of the
same size), by enlarging the cache line whilst fixing the,number of lines.

b. Longer Cache Line — Using‘short,cache lines for a given cachesize provide a lower miss penalty since less data
is required to be fetched into the cache fomeach line fetch /L-onger lines take better advantage of spatial locality,
decreasing the number of compulsory misses sincepstibsequent requests could become hits in the previously
fetched, longg€ache line.

c. Higher Degree of*Assaciativity — Direct mapped caches usually suffer from a large number of conflict misses.
A difect mapped cache ofysize N has about the same miss rate as a 2- way set associative cache of size N/2,
Higher associativity with the same cache size can improve the cache hit rate.

d. Better Replacement Strategies'=|More effective replacement strategies allow associative caches to obtain further
reductions in‘thexnumberaf conflict misses. The perfect replacement strategy is to reject the line that will be
needed furthest forwardsin time.

e. Victim Cache — Jouppi proposed the victim cache, a small fully associative cache, as a technique to reduce the
number of misses in a direct mapped main cache. The victim cache holds lines ejected from the main cache

along with their corresponding addresses; these lines are buffered to be written into memory.

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.1, Issue No.1, February, 2012 ISSN-2319-8354(E)

IV REDUCING CACHE MISS PENALTY
Cache misses usually occur rather infrequently compared to cache hits and furthermore, some cache misses can be
eliminated by the techniques described earlier. However, the miss penalty related to main memory speed, which is

likely to be slow compared to the speed of the cache or processor.

For example, with a miss rate of 10% in a 4-word line size cache with 10ns access time connected to a 50 ns access

according to the equation 3.1. T, is here dominated by the miss penalty as is lways, the case.

9

4.1 Giving Read Misses Priority Over Writes
The first miss penalty reduction technique is to give priority to i i i 0 known as
read-overtake-write). To implement this technique a write bu i i i whilst read are

allowed to proceed.

4.2 Line Fetch Mechanism

The conventional stall on miss line fetch sch Jre XX can be improved upon in a number of ways as
illustrated.

4.2.1 Early-restart

Early-restart allows the process tain the required wo 00p as the requested word is fetched. However, the

processor still has to wait for an a| i 1 data — the worst-case is when the required word is

the last word of the fetched line.

read/write opera

Figure1. Comparisens of line fetch schemes
Write requests may be special cases for some write hit policies. In a write through cache, writes are ‘fire and forget’
operations which are unaffected by line fetches. However, writes in a copy back cache and reads with either write hit
policy may:

i Cause a cache miss requiring a new lime fetch;

ii. Be to a word in a line that is still being fetched;

iii. Access a line that is already in the cache

International Journal Of Advance Research In Science And Engineering

IJARSE, Vol. No.1, Issue No.1, February, 2012

The sequence of address requests A2 BI1*B2*C0 C1 D3*.....

http://www.ijarse.com

ISSN-2319-8354(E)

(a) Stall-on-miss

A
AD RN Bl | gy |B3 | CO Cc1 DO N1 _\ D2 D3| cache
A? | Processor stall forB1 Bl (B2 |CO Cl-L Processor stall forD3 D3 ...Data to processor
e . / (b) Early-restart
A2 RO B1 FBZ B3 rco C1 DO N1 D2 D3 | e cache
T
A2 stall forB1 ‘\ Bl\ BZ\BZ co c1 Processor stall forD3 D3 Data to processor
el (c) Early restart & requested
word first
A2 B1 B2 |B3 RN Cco Cc1 D3 DO D1 D2
I N B Eaa | I S R T T cache
A2 | Bl ‘ B1 [stall for BZ\BZ co || a1 D3| D3 Data to processor
B e (d) Early restart, requested word|first
> & streaming
A2 B1 | B2 B3 RN co C1 D3 DO D1 D2
L == 1 = 1 " | "7 | T | cache
A2 Bl\Bl B2 B2 BO b Cco C1 D3\ D3 Data to processor
4 - o’ - ’l
c1 <
A? Co - (e) Non blocking
B1 B2| B3 BO D3 DO D1 D2 --...cache
Data to processor
A2 B1|B1{B2 |B2 Cco Cc1 D3 | D3
Time

Al or Al isaread hit from address Al

Al

V STREAMING

Streaming allows concurrency between the current line fetch process and processor accesses to other words of the
same cache line being fetched. This behavior is useful in many cases such as long instruction fetch sequences. In
case ii above, the processor can obtain the required data as soon as it arrives in the cache. However, subsequent

requests may result in case iii. With this method, accesses to words other than those in the fetched line still have to

Or A1*'is a tead miss from address Al

wait for the line fetch process to complete before proceeding.

v

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.1, Issue No.1, February, 2012 ISSN-2319-8354(E)

VI NON BLOCKING

If on a cache miss, the cache cannot continue to serve the processor until the required word was received from the
lower level in the memory hierarchy, then this cache is a blocking cache. The blocking cache can be thought of as an
in order cache design; data arrives at the processor in the same order that it was requested. Kroft’s scheme, first
known as lockup free and also known as non blocking combines the requested word first, early restart and streaming
techniques to allow the processor to continue concurrently with a fetch line process pfoceeding in the background.
The situation described in case iii above known as hit under miss can be exploited'here where cache has the ability
to work on other hit requests, waiting only for memory to supply further iisses. A non blocking cache can be
thought as an out of order cache design, by analogy with an out of order processor designavhere the progessor does
not have to execute instructions in the same order that they were fetched. When implementing streaming or non
blocking in an asynchronous design environment, processor requests must be synchronized with thedncoming fetch
data to guarantee that required data present in the cache. This is simply done byahaving an extra valid bit for each

data word.

VII HIDING LATENCY

Techniques for coping with memory latency are essential to-achieveshigh.precessor utilization. Such techniques will
become increasingly important in the future as the gap between processor and memory speeds continues to widen.
Although latency hiding does noti(directly) decrease the time taken for a hit or a miss, it potentially increases overall
system throughput.

The latency of writes can be hidden'by buffering write,accesses with a writer buffer. This technique exploits the fact
that a processor do€s not have to wait\fordwrite to complete as long as it observes the effect of future written data.
Therefore the processar can perform a write by simply issuing it to the write buffer, provided that future reads check
the write buffer for matchingaddresses. The advantage of a write buffer is not only that the processor does not stall
whenséxecuting a write, but also that multiple writes can be overlapped to exploit pipelining.

Buffering read aecesses is more difficult because, unlike writes, the processor cannot proceed until the read access
completes since it needs the data that is being read. With a non-blocking cache it is, however, possible to buffer and
pipeline reads.

This section discusses two basic hardware techniques for tolerating memory latency prefetching and pipelining.

These techniques complement the non-blocking cache by allowing concurrency, thus reducing average read latency.

7.1 Prefetching

Prefetching involves fetching data from the memory before it is actually needed by the processor. This technique
hides the line fetch latency, reducing the miss penalty, if subsequent accesses can be serviced with this perfetched

data. Prefetching can be done by using either software or hardware approaches. Software prefetching uses the

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.1, Issue No.1, February, 2012 ISSN-2319-8354(E)

compiler to transform the code, usually by adding extra explicit fetch instructions to instruct the hardware which
information is to be prefetched. This approach is not considered here.
Hardware-based prefetching, on the other hand, relies on either simple prefetch techniques that fetch a fixed pattern

of data or more sophisticated techniques that approximate memory access patterns dynamically.

7.2 Pipelining

Pipelining is an implementation technique that exploits parallelism and is one of the gfiost'eommon techniques used
to improve the performance of processors. It comes from the observation that instrtction execution can be split into
a number of independent stages chained into a pipeline, allowing a number oflinstructions to,be operated upon
concurrently, one in each different stage of execution. Pipelined processing is beneficialawhen all of the\following
are true:

Each task is relatively independent from the previous one.

Each task requires approximately the same sequence of stages.

The durations of time required by each of the different stages“are“approximately \equal. (For asynchronous
pipelining, the time per stage may not be constaat but rather a function of both the stage and the data passing
through it.)

VIII REDUCING MEMORY TRAFFIC

This section describes techniqdes, for improving memory hierarchy performance by reducing the total memory
traffic. All of the earlier techniques reduceplatency related stalls but also increase the traffic between main memory
and the processor. The main benefit of reducing ‘the traffic”is the power saved by not going off-chip to access
external main memory, but lessening thé traffic could also aid in reducing the miss penalty. Two common
techniques writé merging,(X) and copy-back, are discussed in this section.

8.1 Writedmerging

Cachedlinesyare usually larger than the size of any single piece of write data. Many modern write buffers have the
ability to mergeymemory writes ta save both write buffer space and memory traffic. This can be done by bringing
together a new Write,operation'With'a previous write operation already resident in the write buffer. The new write is
placed in the same ‘write, buffer entry as an existing write when the address of the new store falls inside the line
address range of the existing entry. By this means two or more writes to the same location can be collapsed into one
write or two or more writes to sequential locations in the same cache line can be merged into a single buffer entry
and then written out using a high speed memory burst.

8.2 Copy-back write policy

The fundamental cache activities affecting write policies are reviewed in figure XX. At the beginning of each access
is a comparison to determine whether the request is to a cacheable location. Uncacheable instruction or data accesses

are passed on directly to the system bus and the operation (read-write) performed on the main memory.

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.1, Issue No.1, February, 2012 ISSN-2319-8354(E)

The least complicated operation is a read hit in the cache when the data is simply read out straight from the cache
and sent to the processor. However, in some (multi-level) cache systems an extra activity might be required to
update the higher level in the cache system. A read miss is slightly more complicated: the line fetch process fetches
the required data from the main memory (or a lower level in the memory hierarchy) along with data close to it.
Whilst activities on a read access are fairly simple, there are several issues (policies and techniques) involved in a

write, some of which need to be decided at a very early design stage.

Bus read/write

no
Copy back?
Cache read .
Line fetch
no Bus read

Cache write
(mark dirty)

Cache write
Bus write
yes
Write allocate?
Write
allocate?
Line fetch Bus write BUS Write
Cache write Line fetch
(mark dirty) Cache write
Bus write

Figure 2 . Basic Bus operations

A short theoretical analysis shows how dramatic reductions are generated by a copy-back policy:

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.1, Issue No.1, February, 2012 ISSN-2319-8354(E)

Tavg :TRH +TRM +TWH +TWM

Where Ty, Tay » Twy@ndT,,, are the contributions of cache read hit, read miss, write hit and write miss

consecutively. The read hit contribution in both write-through and copy back caches are:

Tey =RxH T,
Where R represents the fraction of total read accesses over all accesses (for i
the hit rate.
Whilst a write hit in a copy- back cache only has to proceed in the ¢
must be performed in the main memory. The write hit contributi i es can then

be derived respectively as a follows:
TWH (write—through :W X H ><TMEerite

T, =W x

WH (copy-back)

Where W represents the percentage of total write a e taken to update the main memory

with the assumption that Ty,gyrie)) Thic- Since a line fe curs on a read miss, the read miss contribution in a

write-through cache is simply.

Rpenaly 1S th hing a line? A line allocation in a copy-back cache involves a line

given by:

py-back) =RxM [(TRpenaIty +Thit) + (D XTWpenaIty)]

Where D represents the percentage of dirty data amongst the evicted lines and T, is a miss penalty for

penalty
updating the main memory with a dirty evicted line and is directly related to Ty,c\uurite

In a write-through cache (assuming a write-around policy) a write miss contribution is similar to that of the write hit
in the same cache, however, in a copy-back cache (with a write-allocate policy), it is similar to that of the read miss
in the same cache. Write miss contributions are thus:

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.1, Issue No.1, February, 2012 ISSN-2319-8354(E)

TWM (write—through :W x M ><TMEerite

TWM (copy-back) =WxM [(TRpenaIty +Thit) + (D ><TWpenaIty)]

Simplifying the above formulae gives the memory hierarchy performance of write-through and copy-back caches

respectively as:

Tavg(writ&througr) = R[Thit + (M ><TRpenaIty)] + (\N
T = Thit +M [TRpenaIty + (D ><TW

avg(write-through —
For aread :write access ratio of 9:1 with a miss rate of 5% in a 4-wi
and is connected to a 50 ns access time main memory, and assu irty’in the copy-

back cache with no write buffer, these give:

T » =0.9x[10ns +(0.05% (50ns

avg(write-throug

T

avg(copy—back) = 10nS +d

When a non-blocking scheme is applied, Tgoqna1y

only for the required word thus reducing both andT,, copy-back 10 16:25 nsand 13.5 ns

respectively. Furthermore, when s applied, T,, can also be then reduced

penalty

from 200ns to (50 ns + 25 ns +25 is reduced to 13.1 ns with 20%

9.1 Sub-blocking
An architecturally diffe cache organization strategy to reduce cache power dissipation is to break a cache data
array into multiple sub=blocks. Only the cache sub-block where the requested data may be located is addressed for
each cache access. This technique saves power by making each access across a smaller cache. The proportion of
power saved depends on the number of cache sub-blocks. Sub-banking as it is also known, is very attractive to

computer architects designing energy-efficient microprocessors.

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.1, Issue No.1, February, 2012 ISSN-2319-8354(E)

9.2 Cache lock-down

Since caches are transparent to user software, predicting the exact performance of a program in a system with a
cache is difficult. This is an undesirable effect in many embedded systems which require real-time response. A
technique commonly used in embedded systems to ensure deterministic behavior is to load critical code into the
cache embedded systems to ensure deterministic behavior is to load critical code into the cache under supervisor
software control and then, via special hardware support, prevent it from being evicted. This process is known as
cache lock-down. Clearly, locking down most of the cache compromises its ability'to accelerdate the general

performance of the machine, so it is important to have control of the lock-down mgéhanism at a fine granularity.

X CONCLUSION

The above cache system exemplifies the cache architectural techniquesipresented in synchronous implementations.
This paper considers the possibility of using these techniques in the context of an asynchronous,framework. The
idea of multiple levels of cache is attractive in the context of asynchronous desigmwhere a wider variation in access
time can be exploited in a manner that would prove expensive and difficult’in‘a’synchronous framework. This is
because each unit in a synchronous system must complete'its, task in an integer number of clock cycles. The
literature surveyed in this paper concentrated mastly on thetarchitectural level,hardware-based techniques that use
alternative cache organizations for improving memery hierarchy performance. Improving one aspect of the cache
performance usually comes at the expense of others.

Most of these techniques can be easily applied in an asynchronous system. However, non-blocking, read-overtaking-
writes, forwarding and write-mergifgywould present problems sincesthey all require some degree of undesirable

synchronization.

REFERENCES

[1] Jouppi, N. P. Improving Direct-Mapped Cache Performance by the Addition of a Small Fully-Associative Cache
and Prefeteh Buffers. Proceedings of 17th Annual Int’l Symposium on Computer Architecture, 1990, pp. 364-373.
[2] PrzybylskinM. Horowitz, andiJ. Hennessy.Characteristics of performance-optimal multi-level cache hierarchies.
Proceedings of'the 16thInternatienal Symposium on Computer Architecture, 1989, pp. 114 -121.

[3] Baer, Jean-Loup, and Wang, Wen-Hann. On the inclusion properties for multi-level cache hierarchies. 25 years
of the international Symposia on Computer Architecture (selected papers), 1998,pp. 345 — 352

[4] Gee, et al.. Cache Pérformance of the SPEC92Benchmark Suite. IEEE Micro, Vol. 13, Number 4, August, 1993,
pp. 17 — 27.http://www.cs.wisc.edu/~markhill/spec92miss.html

[5] Johnson, Teresa L., and Hwu, Wen-mei W. Runtime Adaptive Cache Hierarchy management via Reference
Analysis. ISCA '97, Denver, CO, USA, pp. 315 — 326.

[6] Jouppi, Norman P, and Wilton, Steven J. E. Tradeoffs in Two-Level On-Chip Caching. Research Report 93/3,
October 1993, Compag Western Research laboratory.

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.1, Issue No.1, February, 2012 ISSN-2319-8354(E)

[7] Steven Przybylski, Mark Horowitz, John L.Hennessy. Performance Tradeoffs in Cache Design. ISCA 1988:
Honolulu, Hawaii, USA, pp. 290 — 298.

[8] Cheriton, D. R., Goosen, H. A. and Boyle, P. D.Multi-level shared caching techniques for scalability in VMP-
M/C. Proceedings of the 16th annual International Symposium on Computer Architecture, 1989, pp. 16-24.

[9] Short, Robert L., Levy, Henry M. A Simulation6Study of Two-Level Caches. Proceedings of the 15" Annual
Symposium on Computer Architecture. May 1988, pp. 81-88.

[10] Wan, Marlene, and George, Varghese. Effect of Second Level Cache Parameterisi

CachePerformance.http://infopad.eecs.berkeley.edu/~varg/CS252_report /Final.h
[11] Hill. A case for Direct Mapped Caches. Computer,21:12. 1988, pp. 25-4
[12] Smith, A. J. Cache Memories. Computing Surveys,14:3. September, 1982, p

