International Journal Of Advance Research In Science And Engineering http://www.ijarse.com
IJARSE, Vol. No.2, Issue No 1., January, 2013 ISSN-2319-8354(E)

A STUDY ON EMBEDDED SYSTEM

Neelam Rani', Yamini Mathur?

UG, *? Department of Electronics and Communication Engineering,
Raj Kumar Goel institute of technology for Women, UP (India)

ABSTRACT

Many embedded system have substantially different design constraints tan desktop, computing Applieations. No
single characterization applies to the diverse spectrum of embeddedgsystems. However, 'some combination of cost
pressure, long life-cycle, real time requirements, reliability requirements, and design culture dysfunetion can make
it difficult to be successful applying traditional computer design methodologiessandstools to embedded applications.
Embedded system in many case must be optimized for life-cycle and business-driven faCtors rather than for
maximum computing throughput. There is currentlydittle®tool support for expanding embedded computer design to
the scope of holistic embedded system desigh. However, knowing théystrength§ and weaknesses of current
approaches can set expectations appropriately, identify risk area to tool adopters and suggest ways in which tool

builders can meet industrial needs.

Keywords: Real time operating system (RTOS), Readhonly memory (ROM), Random access memory
(RAM), Input Output (1/0), Analag topRigital (A/D), System on a chip (SOC), Moving Picture Experts
Group (MPEG), Automatic Teller Machine (AsLM), Application Specific Integrated circuit (ASIC),
Matrix laboratory (MATLAB), Digital signal praocessor (DSP).

l. INTRODUCTION
If we look'around us, today we see humerous appliances which we use daily, be it our refrigerator, the microwave
Oven, cars etc:\Most appliances,today are powered by something beneath the sheath that makes them do what they
do. These are tiny microprocessors, which respond to various keystrokes or inputs. These tiny microprocessors,

working on basic assembly languages, are the heart of the appliances. We call them embedded systems.

1. HISTORY
The first recognizably modern embedded system was the Apollo guidance computer, developed by Charles stark
draper at the MIT Instrumentation Laboratory. At the project's inception, the Apollo guidance computer was
considered the riskiest item in the Apollo project. The use of the then monolithic integrated circuits, to reduce the

size and weight, increased this risk.




International Journal Of Advance Research In Science And Engineering http://www.ijarse.com
IJARSE, Vol. No.2, Issue No 1., January, 2013 ISSN-2319-8354(E)

The first mass-produced embedded system was the guidance computer for the Minuteman missile in 1961. It was the
Automatics D-17 guidance computer, built using discrete transistor logic and a hard disk for main memory. when
the Minuteman Il went into production in 1966 the D-17 was replaced with a new computer that used integrated
circuit, and was the first volume user of them.

1. EMBEDDED APPLICATION DEVELOPMENT CHARACTERISTICS

What characterizes an embedded system? Usually it means that there are a set of predefined, specific functions to be
performed, and that the resources available (e.g., memory, power, processof speed, cemputational functignality ) are
constrained. Often, though not always, the application will run outhyof ROM on a microprocessor.) This, in
comparison to a desktop computer, which is a general-purpose grocessor ahd support system designéd for a wide
range of applications. The range of embedded software is much broader than desktop software, Where a handful of
applications (word processors, spreadsheets, games, and so on) makes up the vast - majority of applications.

The most developed segment of the embedded toolsgmarket are the off-the-shelf \real-time operating systems
(RTOSs), including their support programming tooels: source level debuggers, integrated development environment,

and compilers.

IV. COMPONENTS NEEDED
The components needed for the déwvelopment of Embedded Applications are:
Micro controller.
Real-time Operating System.
A language for coding.
Machine code generator.
Debuggers
4.1 hcro Controller
The micro controller consists of microprocessor, ROM, RAM and some 1/O ports all on the same chip. The
commonly used micro,controller is'8051.
4.2 Machine Code ‘Generator
The source code is written in particular language like C/C++. This has to be then used to generate the code for the
particular microprocessor. The machine specific code is then burnt into the chip(ROM). The microprocessor takes
the instructions from the ROM and executes them to produce the desired effect.
4.3 Real-Time Operating System
What does “real-time” mean when used in the context of an operating system? Simply put, this means that the
embedded application can and will respond to external events in real time, as opposed to waiting for some other task

or process to complete its operation. This is made even more confusing by the use of the terms “hard real-time” and




International Journal Of Advance Research In Science And Engineering http://www.ijarse.com
IJARSE, Vol. No.2, Issue No 1., January, 2013 ISSN-2319-8354(E)

“soft real-time.”

Hard real-time means an activity must be completed always by a specified deadline (which may be a particular time
or time intervals, or at the arrival of some event), usually in tens of microseconds to few milliseconds. Some
examples include the processing of a video stream, the firing of spark plugs in an automobile engine, or the
processing of echoes in a Doppler radar.

Soft real-time applies to those systems that are not hard real-time, but some sort of timeliness is implied. That is,

missing the deadline will not compromise the system’s integrity, but will have a de

DESIGN ISSUES FOR EMBEDDED SYSTEMS

Embedded System are, if nothing else, characterized by constrai i ost, and so

on. Numerous questions have to be answered before the design

What are the worst case performance requireme
What are the number and complexity of acti
What is the degree of coupling of tasks
How much RAM and ROM will be consumed
How much RAM and ROM does the hardware de

A number of more commonly issues are summarized

I A

5.1 Time Constrai

servicing an A/D converter).

2. Time sensitive task routines are different from time critical tasks in that they can tolerate a large latency before
being serviced. Like time critical task routines, they may also occur at fixed rates or they may be initiated at
random intervals, but are guaranteed to execute no more frequently than some fixed rate by the task handler
itself.

3. Idle task routines are important background operations, and they execute as frequently as possible at more or

less random interval when it is convenient.




International Journal Of Advance Research In Science And Engineering http://www.ijarse.com
IJARSE, Vol. No.2, Issue No 1., January, 2013 ISSN-2319-8354(E)

4. Mainline tasks routines interpret the user commands, perform non-real-time functions, and make calls to the

time sensitive and idle task service routines.
5.2 Safety

Probably the first and simplest techniques learned by many embedded programmers consists of filling unused
program memory with either halt instructions or illegal instructions. This techniques guards against illegal jumps

outside of the program space and provides cheap insurance.

Another common protection is to use buffers that guard against stack underflow/overflowyor the corruption of a

task’s stack. Many of the commercial RTOSs now contain facilities and funetions that suppaort stack checking.

To verify the integrity of a program or data stored in ROM, a simple,ROM test'should be included as well a

watchdog timer to prevent the software from getting caught in afloop.
5.3 Device Drivers

It is well known that writing efficient device drivers requires knowledge of both hardware and software. The
resulting device drivers become the keys to_embedded system performancepsineefthey are called repeatedly, and
therefore dictate real-time performance in terms ef response time, and utilization of memory and other system

resources.

5.4 Storage Allocation

One important feature to be considered.in the,selection of an embedded system design is storage allocation. 111
designed dynamic storage allocationican be wasteful'for.two reasons. First, allocating memory from the heap can
be both slow andghon-deterministic. Thedime takes forthe manager to search the free-list for a block of the right
size may not be boundedy Second, one may create the possibility of a memory allocation fault caused by a
fragmentéd heap. One typicahsolution is'to. statically declare all objects up front always exist ant take space.

Whilst'difficult, the apparently conflicting'goals of a dynamic storage allocator can be achieved.

5.5 Optimizing Performance

Writing embedded cade thatsfuns efficiently brings about a whole new set of rudderless. Often optimizing for speed
and size opposing design goals-an improvement on one often degrades the other. In trying to achieve this balance,
the article promotes the use of three techniques:

1. The judicious use of the optimization option found with most embedded cross-platform compilers (for example,
eliminating redundant code, or replacing operations with equivalent but faster operations, or unrolling loops
optimizing the use of registers, or removing code segments that the compiler knows cannot be reached)

2. The mix of fixed and floating-point operations.

3. The employment of users optimizations, making the most out of available resources.




International Journal Of Advance Research In Science And Engineering http://www.ijarse.com
IJARSE, Vol. No.2, Issue No 1., January, 2013 ISSN-2319-8354(E)

5.6 Debugging memory Problems

Since many RTOs and/or embedded microprocessors do not support memory protection, tracking down software

memory bugs can become a serious debugging problem. In attacking this problem, it is best to categorize the

problem by the type of Memory affected. In tree general , they fall into three categoriess

1. Global memory bugs: those bugs that result in corruption of global memory dafa areas.

2. Stack memory bugs: these often cause a complete failure of the program.gxecution; they areithe hardest to track
down as they are often a function of external events and the current state of the stack.

3. Dynamic allocated memory bugs: examples are, heap memorysallocated by a“mallow service; or problems

caused by writing past the boundaries of an allocated memory block or using one that is neslongef allocated.

FUTURE TRENDS IN EMBEDDED SYSTEM RTOS
There is a flood of trends rushing through the embedded market today, many influencing the RTOS requirements in
conflicting ways. It is hard to envision that fivedyears from now RTOS produgts,willfbear much resemblance to what
is supplied today. Some of these trends are”application driven while others are device driven, and it is important to

understand the influences these trends will have.

6.1 Application Specific

In several markets, the end users have banded together to issue specific requirements for RTOSs to be used in their
future products. They have purposely. chosen to drop their proprietary behaviors of the past in order to get the
benefits of multipleisuppliers and interoperability of‘software. In this manner, only the needed software is linked

into the application, preventing additional overhead and allowing for an extremely efficient kernel implementation.

6.2 System On A Chip (Soc)

As mentioned earlier, SOCs areybeginning to appear throughout the embedded markets, in al least three different
ways. First, the semiconductor suppliers are providing developers the ability to pick and choose from a combination
of industry standard functions integrated around a 32- bit core processor. These functions may include memory, 10
drivers, a bus interface{ network protocol support, or algorithms for special functions, such as an MPEG decoder.
Second, end product manufacturers are integrating custom ASICs with common 32-bit core processors to provide
complete solutions. Some recent examples include cable modems and ATM switches. And third, startups are
emerging that will provide custom design services, complete with optimized RTQOS, compiler, and debuggers.

SOC will be particularly well suited for a whole range of consumer electronics and wireless communications
devices where size, cost, and low power requirements are crucial. It will also drive cost reductions in networking

and telecom equipment, where more functionality can be added at lower costs. A subset of this SOC trend is the




International Journal Of Advance Research In Science And Engineering http://www.ijarse.com
IJARSE, Vol. No.2, Issue No 1., January, 2013 ISSN-2319-8354(E)

emergence of multi-core devices on single silicon. The most common to date has been the combination of standard
microprocessors and Digital Signal Processors (DSPs). In some cases, the DSPs are dedicated functions processors,

but emerging trends have the DSP as a full programmable device.

6.3 Automatic Code Generation
Probably the most radical notion is the idea that application code can be generated automatically from graphical
diagrams depicting the logic flow for the end product. To a limited extent, this has alre
product like MATRIX, MATLAB being used for application modeling and

been accomplished, with

e generation. In the case of

CONCLUSION
This paper helped in understanding the following co
1. Embedded systems application developmen
2. The components of embedded systems.
3. The design issues.
4. The applications in which embedded systems are
5. RTOS and its features.

6. How to carry out effective p

[3] “Design Automa
[4] “Embedded Systems
[5] Daniel D. Gajski, Frank Vahid, Sanjiv Narayan & Jie Gong, “Specification and Design of Embedded Systems”,
PTR Pren-tice Hall, Englewood Cliffs NJ, 1994.

[6] Jack Ganssle, “Art of programming Embedded Systems”, Aca-demic Press, San Diego, 1992. Don Thomas &

bedded Systems”: an international journal, Kluwer Academic, ISSN 0929-5585.

gramming”, Miller Freeman, San Fran-cisco, ISSN 1040-3272.

Rolf Ernst (eds.),Proceedings: Fourth Inter-national Workshop on Hardware/Software Co-Design, IEEE Computer
Society, Los Alamitos CA, 1996.




International Journal Of Advance Research In Science And Engineering http://www.ijarse.com
IJARSE, Vol. No.2, Issue No 1., January, 2013 ISSN-2319-8354(E)

[7] David Patterson & John Hennessy, “Computer Architecture: a Quantitative Approach”, Morgan Kaufmann, San
Mateo CA,1990.

[8] Philip Koopman, “Perils of the PC Cache”, Embedded Systems Programming, May 1993,6(5) 26-34.

[9] Shem-Tov Levi & Ashok Agrawala, “Fault Tolerant System Design”, McGraw-Hill, New York, 1994,

[10] Daniel Siewiorek & Robert Swarz, “Reliable Computer Systems: design and evaluation ” (2nd edition), Digital
Press, Burlington MA, 1992.

[12] Nancy Leveson, Safeware: system safety and computers, Addison-Wesley, ReadinggMA, 1994.

[13] Georgette Demeset al., “The Engineering Design Research Center of CarnegieMellon University,”Proceedings

of the IEEE,81(1) 10-24, January 1993.




